화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.4, 341-354, November, 2016
Thermally induced crystallization kinetics of uncrosslinked and unfilled synthetic cis-1,4-polyisoprene rubber monitored by shear rheological tests
E-mail:
This study demonstrates the unique capability of a shear rotational rheometer for studying the thermally induced crystallization (TIC) of uncrosslinked and unfilled cis-1,4-polyisoprene rubber (IR). At temperatures below -15°C, a crystallization phenomenon (TIC) occurred in a quasi-unstrained IR specimen. Such a distinguished phenomenon was determined from the steady and sharp changes of both tanδ and the modulus. The changing ratio of those parameters with time characterizes the crystallization rate, on which the effects of the compressive force magnitude, testing repeat, and temperature are studied. The crystallization rate was shown to depend less on the magnitude of normal force, but depended largely on the specimen’s previous testing history. A specimen not fully recovered from the previous crystallized memory showed a faster rate than before. More cooling to -25°C increased the crystallization rate, but the slow crystallization helped increase the final crystallinity. The crystallization rate was further interpreted by the Avrami equation to propose the crystal structure, whose morphological feature was shown in agreement with the reported TEM and X-ray results. However, our study found a thermo-mechanically aged specimen showed a very different rheological behavior at the late stage of crystallization suggesting the crystalline metamorphosis. But this unexpected behavior turned out to be unrecoverable indicating a property failure due to material aging more plausibly. All these findings were successfully monitored by the rheometer. It is expected the well-organized rheometric measurements can sufficiently supplement some instrumental limitations of the traditional crystallization monitoring analyzers on soft materials.
  1. Albouy PA, Vieyres A, Perez-Aparicio R, Sanseau O, Sotta P, Polymer, 55(16), 4022 (2014)
  2. Andrews EH, Proc. R. Soc. A-Math. Phys. Eng. Sci., 270, 232 (1962)
  3. Andrews EH, Proc. R. Soc. A-Math. Phys. Eng. Sci., 277, 562 (1964)
  4. Andrews EH, Pure Appl. Chem., 31, 91 (1972)
  5. Arruda EM, Boyce MC, J. Mech. Phys. Solids, 41, 389 (1993)
  6. Avrami M, J. Chem. Phys., 7, 1103 (1939)
  7. Avrami M, J. Chem. Phys., 8, 212 (1940)
  8. Bekkedahl N, Wood LA, Rubber Chem. Technol., 14, 544 (1941)
  9. Boutahar K, Carrot C, Guillet J, Macromolecules, 31(6), 1921 (1998)
  10. Candau N, Laghmach R, Chazeau L, Chenal JM, Gauthier C, Biben T, Munch E, Polymer, 60, 115 (2015)
  11. Che J, Burger C, Toki S, Rong LX, Hsiao BS, Amnuaypornsri S, Sakdapipanich J, Macromolecules, 46(24), 9712 (2013)
  12. Chenal JM, Chazeau L, Bomal Y, Gauthier C, J. Polym. Sci. B: Polym. Phys., 45(8), 955 (2007)
  13. Choudhary V, Varma HS, Varma IK, Polymer, 32, 2534 (1991)
  14. Cobbs WH, Burton RL, J. Polym. Sci. A: Polym. Chem., 10, 275 (1953)
  15. Dotsch T, Pollard M, Wilhelm M, J. Phys. Condens. Matter, 15, S923 (2003)
  16. Doyle MJ, Polym. Eng. Sci., 40(2), 330 (2000)
  17. Edwards BC, J. Polym. Sci. B: Polym. Phys., 13, 1387 (1975)
  18. Folt VL, Smith RW, Wilkes CE, Rubber Chem. Technol., 44, 1 (1971)
  19. Gent AN, Trans. Faraday Soc., 50, 521 (1954)
  20. Gent A, Kawahara S, Zhao J, Rubber Chem. Technol., 71, 668 (1998)
  21. Goritz D, Grassler R, Rubber Chem. Technol., 60, 217 (1987)
  22. Humbert S, Lame O, Seguela R, Vigier G, Polymer, 52(21), 4899 (2011)
  23. Johnson WA, Mehl RF, Trans. AIME, 135, 396 (1939)
  24. Katz JR, Naturwissenschaften, 13, 410 (1925)
  25. Kelarakis A, Mai SM, Booth C, Ryan AJ, Polymer, 46(8), 2739 (2005)
  26. Khanna YP, Macromolecules, 26, 3639 (1993)
  27. Kim B, Hong D, Chang WV, J. Appl. Polym. Sci., 132, 42195- (2015)
  28. Lake GJ, Rubber Chem. Technol., 68, 435 (1995)
  29. Le Cam JB, Rubber Chem. Technol., 83, 247 (2010)
  30. Luch D, Yeh GSY, J. Appl. Phys., 43, 4326 (1972)
  31. Luch D, Yeh GSY, J. Polym. Sci. B: Polym. Phys., 11, 467 (1973)
  32. Magill JH, Rubber Chem. Technol., 68, 507 (1995)
  33. Min M, Lu A, Zhang R, Gao Y, Lu Z, Zhu J, Polym. -Plast. Technol. Eng., 47, 779 (2008)
  34. Poompradub S, Tosaka M, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao BS, J. Appl. Phys., 97, 103529 (2005)
  35. Rault J, Marchal J, Judeinstein P, Albouy PA, Macromolecules, 39(24), 8356 (2006)
  36. Shimomura Y, White JL, Spruiell JE, J. Appl. Polym. Sci., 27, 3553 (1982)
  37. Sun TC, Chen FH, Dong X, Han CC, Polymer, 49(11), 2717 (2008)
  38. Tanaka Y, Rubber Chem. Technol., 74, 355 (2001)
  39. Toki S, Che J, Rong LX, Hsiao BS, Amnuaypornsri S, Nimpaiboon A, Sakdapipanich J, Macromolecules, 46(13), 5238 (2013)
  40. Toki S, Fujimaki T, Okuyama M, Polymer, 41(14), 5423 (2000)
  41. Tosaka M, Polym. J., 39, 1207 (2007)
  42. Tosaka M, Kohjiya S, Ikeda Y, Toki S, Hsiao BS, Polym. J., 42, 474 (2010)
  43. Treloar LRG, Trans. Faraday Soc., 37, 84 (1941)
  44. Wang YQ, Zhang HF, Wu YP, Yang J, Zhang LQ, J. Appl. Polym. Sci., 96(2), 318 (2005)
  45. Wood LA, Bekkedahl N, J. Appl. Phys., 17, 362 (1946)