화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.43, 158-163, November, 2016
Nanoporous pyropolymer nanosheets fabricated from renewable bio-resources for supercapacitors
E-mail:,
In this study, nanoporous pyropolymer nanosheets (NPNs) were fabricated from Citreae peels by simple pyrolysis with potassium hydroxide. The NPNs have a high specific surface area of 1522 m2 g-1, numerous nanometer-scale pores, a high electrical conductivity of 210 S cm-1, and a large amount of oxygen (19.4 wt.%) and nitrogen (3.4 wt.%) heteroatoms. These unique material properties lead to good electrochemical performance of NPNs as supercapacitor electrodes; they showed high specific capacitance of 330 F g-1, good rate capabilities (221 F g-1 to 60 A g-1), and stable cyclic performance for more than 20,000 cycles. This study provides information on the simple fabrication of sustainable and functional carbon-based materials containing numerous nanopores and redox-active heteroatoms. In addition, these materials demonstrate superior electrochemical performances as electrodes for supercapacitors.
  1. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  2. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  3. Lu M, Beguin F, Frackowiak E (Eds.), Supercapacitors: Materials, Systems and Applications, John Wiley & Sons, 2013.
  4. Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ, Adv. Mater., 25(14), 1993 (2013)
  5. Jiang H, Lee PS, Li C, Energy Environ. Sci., 6, 41 (2013)
  6. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  7. Xia K, Gao Q, Jiang J, Hu J, Carbon, 46, 1718 (2008)
  8. Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin HJ, J. Power Sources, 234, 285 (2013)
  9. Raymundo-Pinero E, Kierzek K, Machnikowski J, Beguin F, Carbon, 44, 2498 (2006)
  10. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Nano Lett., 10, 4863 (2010)
  11. Yun YS, Yoon G, Kang K, Jin HJ, Carbon, 80, 246 (2014)
  12. Pico F, Rojo JM, Sanjuan ML, Anson A, Benito AM, Callejas MA, Maser WK, Martinez MT, J. Electrochem. Soc., 151(6), A831 (2004)
  13. Lv Y, Zhang F, Dou Y, Zhai Y, Wnag J, Liu H, et al., J. Mater. Chem., 22, 93 (2012)
  14. Yun YS, Lee ME, Joo MJ, Jin HJ, J. Power Sources, 246, 540 (2014)
  15. Xiong W, Liu MX, Gan LH, Lv YK, Li Y, Yang L, Xu ZJ, Hao ZX, Liu HL, Chen LW, J. Power Sources, 196(23), 10461 (2011)
  16. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ, J. Power Sources, 158(1), 784 (2006)
  17. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  18. Yun YS, Lee S, Kim NR, Kang M, Leal C, Park KY, Kang K, Jin HJ, J. Power Sources, 313, 142 (2016)
  19. Wang W, Guo S, Penchev M, Ruiz I, Bozhilov KN, Yan D, et al., Nano Energy, 2, 294 (2013)
  20. Sun F, Gao J, Liu X, Pi X, Yang Y, Wu S, Appl. Surf. Sci., 387, 857 (2016)
  21. Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, et al., ACS Nano, 10, 4579 (2016)
  22. Huang KB, Li M, Chen ZH, Yao YY, Yang XW, Electrochim. Acta, 158, 306 (2015)
  23. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ, Adv. Funct. Mater., 19(11), 1800 (2009)
  24. Chen CM, Zhang Q, Yang MG, Huang CH, Yang YG, Wang MZ, Carbon, 50, 3572 (2012)
  25. Yun YS, Shim J, Tak Y, Jin HJ, RSC Adv., 2, 4353 (2012)
  26. Yun YS, Park HH, Jin HJ, Materials, 5, 1258 (2012)
  27. Cho SY, Yun YS, Lee S, Jang D, Park KY, Kim JK, et al., Nat. Commun., 6, 7145 (2015)
  28. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, et al., Nanotechnology, 23, 015401 (2012)
  29. Yun YS, Le VD, Kim H, Chang SJ, Baek SJ, Park S, Kim BH, Kim YH, Kang K, Jin HJ, J. Power Sources, 262, 79 (2014)
  30. Yun YS, Cho SY, Jin HJ, Macromol. Res., 22(5), 509 (2014)