Journal of Industrial and Engineering Chemistry, Vol.43, 44-52, November, 2016
Biological treatment performance of hypersaline wastewaters with high phenols concentration from table olive packaging industry using sequencing batch reactors
E-mail:
Biological treatment of hypersaline wastewaters such as fermentation brine from table olive processing (FTOP), was carried out using four sequential biological reactors (SBRs). These wastewaters were characterized by conductivities higher than 90 mS cm-1 together with COD and total phenols concentration values of more than 15 g L-1 and 1000 mg L-1, respectively. In order to increase the organic removal efficiency and to reduce the hydraulic retention time (HRT), extra nutrients were added and pre-treatment by adsorption was performed. Results showed that the COD/N/P relationship, in the FTOP, of 250/5/1 was appropriate for the biological process reaching COD removal efficiencies of around 80%. The FTOP adsorption pre-treatment with powder activated carbon for the reduction of phenols concentration to 400 mg L-1 led to a HRT reduction from 40 to 15 days, maintaining the COD and total phenols removal percentages around 78% and 97%, respectively. On the other hand, γ-Proteobacteria was the main bacterial class, representing around 74% of the microbial community in the reactors.
- Moussavi G, Barikbin B, Mahmoudi M, Chem. Eng. J., 158(3), 498 (2010)
- ASEMESA, Asociacion Exportadores e Industriales de Aceitunas de Mesa, ASEMESA, 2016 http://www.asemesa.es/content/datos_generales_del_sector (accessed December 2014).
- Marsilio V, Lanza B, J. Sci. Food Agric., 76, 520 (1998)
- Garrido-Fernandez A, Fernandez-Diez MJ, Adams MR, Table Olives. Production and Processing, Chapman and Hall, London, 1997 p. 496.
- Malheiro R, Sousa A, Casal S, Bento A, Pereira JA, Food Chem. Toxicol., 49, 450 (2011)
- Chiavola A, Farabegoli G, Antonetti F, Biochem. Eng. J., 85, 71 (2014)
- Gunay A, Cetin M, Int. Biodeterior. Biodegrad., 85, 237 (2013)
- Beltran J, Gonzalez T, Garcia J, J. Hazard. Mater., 154(1-3), 839 (2008)
- Aggelis GG, Gavala HN, Lyberatos G, J. Agric. Eng. Res., 80, 283 (2001)
- Kotsou M, Kyriacou A, Lasaridi K, Pilidis G, Process Biochem., 39(11), 1653 (2004)
- Maza-Marquez P, Martinez-Toledo MV, Gonzalez-Lopez J, Rodelas B, Juarez-Jimenez B, Fenice M, Int. Biodeterior. Biodegrad., 82, 192 (2013)
- Wang YF, Wang XL, Li H, Lin KF, Wang P, Yang J, Liu YD, Sun ZY, Fan LH, Wu ZM, Int. Biodeterior. Biodegrad., 93, 138 (2014)
- Haddadi A, Shavandi M, Int. Biodeterior. Biodegrad., 85, 29 (2013)
- Peyton BM, Wilson T, Yonge DR, Water Res., 36, 4811 (2002)
- Kargi F, Dincer AR, Enzyme Microb. Technol., 19(7), 529 (1996)
- Behnood M, Nasernejad B, Nikazar M, J. Ind. Eng. Chem., 20(4), 1879 (2014)
- El-Naas MH, Al-Zuhair S, Makhlouf S, J. Ind. Eng. Chem., 16(2), 267 (2010)
- Sivasubramanian S, Namasivayam SKR, J. Environ. Chem. Eng., 3, 243 (2015)
- Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK, J. Colloid Interface Sci., 342(2), 518 (2010)
- Mittal A, Kaur D, Malviya A, Mittal J, Gupta VK, J. Colloid Interface Sci., 337(2), 345 (2009)
- Mittal A, Mittal J, Malviya A, Gupta VK, J. Colloid Interface Sci., 340(1), 16 (2009)
- Gupta VK, Ali I, Saleh TA, Nayaka A, Agarwal S, RSC Adv., 2(16), 6380 (2012)
- Jain AK, Gupta VK, Bhatnagar A, Suhas, Sep. Sci. Technol., 38(2), 463 (2003)
- Saleh TA, Gupta VK, Adv. Colloid Interface Sci., 211, 92 (2014)
- Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA, Adv. Colloid Interface Sci., 193-194, 24 (2013)
- Ferrer-Polonio E, Mendoza-Roca JA, Iborra-Clar A, Alonso-Molina JL, Pastor-Alcaniz L, Chem. Eng. J., 273, 595 (2015)
- Fendri I, Chamkha M, Bouaziz M, Labat M, Sayadi S, Abdelkafi S, Environ. Technol., 34, 1 (2013)
- Barranco CR, Balbuena MB, Garcia PG, Fernandez AG, J. Food Eng., 49(2-3), 237 (2001)
- Parinos CS, Stalikas CD, Giannopoulos TS, Pilidis GA, J. Hazard. Mater., 145(1-2), 339 (2007)
- Activated Sludge Process Desings and Control: Theory and Practice, in: Eckenfelder WW, Grau P (Eds.), Technomic Publishing AG, Lancaster, Pennsylvania, 1992 p. 156.
- APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, 2005.
- El-Abbassi A, Khayet M, Hafidi A, Water Res., 45, 4522 (2011)
- Singleton V, Orthofer R, Lamuela-Raventos RM, Methods Enzymol., 299, 152 (1999)
- Metcalf & Eddy, Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F, Wastewater Engineering. Treatment and Reuse, fourth ed., McGraw-Hill, New York, 2003 p. 1830.
- Soto ML, Moure A, Dominguez H, Parajo JC, J. Food Eng., 105(1), 1 (2011)
- Kiai H, Hafidi A, LWT-Food Sci. Technol., 57(2), 663 (2014)
- Ryan D, Robards K, Lavee S, Int. J. Food Sci. Technol., 34, 265 (1999)
- Brenes M, Rejano L, Garcia P, Sanchez AH, Garrido A, J. Agric. Food Chem., 43, 2702 (1995)
- Ferrer-Polonio E, Iborra-Clar A, Mendoza-Roca JA, Pastor-Alcaniz L, J. Chem. Technol. Biotechnol., 91(1), 131 (2016)
- Dincer AR, Kargi F, Process Biochem., 36(8-9), 901 (2001)
- Lee DJ, Chen YY, Show KY, Whiteley CG, Tay JH, Biotechnol. Adv., 28(6), 919 (2010)
- Taheri E, Khiadani MH, Amin MM, Nikaeen M, Hassanzadeh A, Bioresour. Technol., 111, 21 (2012)
- Corsino SF, Capodici M, Morici C, Torregrossa M, Viviani G, Water Res., 88, 329 (2016)
- Lobos J, Wisniewski C, Heran M, Grasmick A, J. Membr. Sci., 317(1-2), 71 (2008)
- Liu Y, Liu HN, Cui L, Zhang KS, Desalination, 297, 97 (2012)
- Teruel-Fernandez S, Tratamiento biologico de aguas residuales industriales en medio salino. Metodologia de la puesta en marcha y analisis de la adaptacion de los fangos activos (Tesis Doctoral), Universidad Politecnica de Valencia, 2001.
- Wu QL, Zwart G, Schauer M, Kamst-van Agterveld M, Hahn MW, Appl. Environ. Microbiol., 72, 5478 (2006)
- Park SJ, Kang CH, Rhee SK, J. Microbiol. Biotechnol., 16, 1640 (2006)
- Dosta J, Nieto JM, Vila J, Grifoll M, Mata-Alvarez J, Bioresour. Technol., 102(5), 4013 (2011)