화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3121-3127, November, 2016
Effect of gas diffusion layer compression on the polarization curves of a polymer electrolyte membrane fuel cell: Analysis using a polarization curve-fitting model
E-mail:
The effect of gas diffusion layer (GDL) compression on the polarization curves of a polymer electrolyte membrane fuel cell was analyzed using a polarization curve-fitting model. The polarization curves measured at four different GDL compression ratios were fitted with the model and were decomposed into an open circuit voltage and three over-voltages resulting from activation, ohmic, and mass-transport losses, respectively. The model fitting was excellent enough to use the model in the subsequent analysis of the GDL compression effect. The relationship between the over-voltages and the compression ratio was investigated by analyzing the estimated model parameters, and an optimal compression ratio was determined for the fuel cell. The proposed analysis method based on the polarization curve-fitting model can be applied to identifying quantitative differences of polarization curves under various operating conditions and designs for fuel cells.
  1. Larminie J, Dicks A, Fuel cell systems explained, 2nd Ed., Wiley, West Sussex, England (2003).
  2. Barbir F, PEM fuel cells: Theory and practice, 2nd Ed., Elsevier, Burlington, USA (2013).
  3. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
  4. Han IS, Shin HK, Korean Chem. Eng. Res., 53(2), 236 (2015)
  5. Mendez A, Leo TJ, Herreros MA, Energies, 7, 4676 (2014)
  6. Park S, Popov BN, Korean J. Chem. Eng., 31(8), 1384 (2014)
  7. Han IS, Kho BK, Cho S, J. Power Sources, 304, 244 (2016)
  8. Choi CH, Yu S, Han IS, Kho BK, Kang DG, Lee HY, Seo MS, Kong JW, Kim G, Ahn JW, Park SK, Jang DW, Lee JH, Kim M, Int. J. Hydrog. Energy, 41(5), 3591 (2016)
  9. Lee WK, Ho CH, Van Zee JW, Murthy M, J. Power Sources, 84(1), 45 (1999)
  10. Ge JB, Higier A, Liu HT, J. Power Sources, 159(2), 922 (2006)
  11. Lin JH, Chen WH, Su YJ, Ko TH, Fuel, 87(12), 2420 (2008)
  12. Zhou YB, Jiao K, Du Q, Yin Y, Li XG, Int. J. Hydrog. Energy, 38(29), 12891 (2013)
  13. Nitta I, Himanen O, Mikkola M, Electrochem. Commun., 10, 47 (2008)
  14. Ismail MS, Ingham DB, Ma L, Pourkashanian M, Renew. Energy, 52, 40 (2013)
  15. Ye DH, Gauthier E, Benziger JB, Pan M, J. Power Sources, 256, 449 (2014)
  16. Bazylak A, Sinton D, Liu ZS, Djilali N, J. Power Sources, 163(2), 784 (2007)
  17. Ye DHH, Gauthier E, Cheah MJ, Benziger J, Pan M, AIChE J., 61(1), 355 (2015)
  18. Yuan XZ, Wang HJ, Sun JC, Zhang JJ, Int. J. Hydrog. Energy, 32(17), 4365 (2007)
  19. Haji S, Renew. Energy, 36(2), 451 (2011)
  20. Moreira MV, da Silva GE, Renew. Energy, 34(7), 1734 (2009)
  21. Kim J, Lee SM, Srinivasan S, Chamberlin CE, J. Electrochem. Soc., 142(8), 2670 (1995)
  22. Saadi A, Becherif M, Aboubou A, Ayad MY, Renew. Energy, 56, 67 (2013)
  23. Laurencelle F, Chahine R, Hamelin J, Agbossou K, Fournier M, Bose TK, Laperriere A, Fuel Cells, 1, 66 (2001)
  24. MATLAB optimization toolbox user’s guide, http://it.mathworks.com/help/pdf_doc/optim/optim_tb.pdf.
  25. Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z, Electrochim. Acta, 51(26), 5746 (2006)
  26. Yuan XZ, Zhang SS, Wang HJ, Wu JF, Sun JC, Hiesgen R, Friedrich KA, Schulze M, Haug A, J. Power Sources, 195(22), 7594 (2010)