화학공학소재연구정보센터
Polymer(Korea), Vol.24, No.2, 268-275, March, 2000
고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구: 고분자 점착하층의 영향
Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composites Films Fabricated under High Intensity Electric Fields: Effect of Polymer Sublayer
E-mail:
초록
고전기장을 이용하여 제조한 도전성 탄소섬유/폴리에틸렌 복합필름에 있어서 고분자 점착하층의 두께가 제조된 필름의 체적비저항과 인장강도에 미치는 효과에 대하여 연구하였다. 탄소섬유(CF)함량과 CF 층밀도에 따라 제조된 필름의 체적비저항과 인장강도의 점착하층에 대한 의존성의 양상은 복잡하게 나타났다. 이는 점착하층의 증가에 따라서 필름 하층면에 중심부나 위쪽에 비하여 CF농도가 낮은 절연성 고분자층의 두께가 증가하고 필름 상층면 근처에서는 CF의 함침에 필요한 고분자 매트릭스의 양이 적어져 매트릭스 함침이 불충분하여 기공이 포함된 구조를 형성시키는 효과와 증가된 매트릭스의 유동성을 바탕으로 CF 분산성이 향상되고 동시에 보다 치밀한 구조가 형성되는 두 가지 상반되는 효과의 상대적 기여 정도의 차이를 통하여 설명할 수 있었다. 이들 결과는 전자파 차폐용 고도전성 고분자 차폐필름의 제조에 있어서 전기적 성질과 기계적 성질의 최적화하는데 중요하다.
We investigated the effect of polymer sublayer on volumetric resistivity and tensile strength of carbon fiber (CF)/polyethylene composite films fabricated under high intensity electric fields. The dependence of bolumetric resistivity and tensile strength of the films on the polymer sublayer thickness or mass part exhibited complex behavior according to CF content and CF layer density in the films. As the thickness of polymer sublater increases, two groups of processes at thermo-methcanical forming stage would take effects in the properties of the films. The first group comprises the increase of polymer layer thickness having reduced CF content compared with central or upper part of the film and insufficient wetting of CF resulting in the loosened structure near upper film side. The second group, on the other hand, is the improvement of mobility of molten sublayer leading to better distribution of CF throughout the film thickness and the formation of more compact structure. The different degree of contribution of these two competing process at varied CF content and CF layer density could explain complex dependence of the film properties on the polymer sublayer. These results are important to optimize the electrical and mechanical properties of highly conductive polymer films, which can be used as electromagnetic interference shielding materials.
  1. Voronezhcev YI, Goldade VA, Pinchuk LS, Snezhkov VV, "Electrical and Magnetic Fields in Polymer Composites Technology," p. 264, Science and Technics, Minsk, 1990 (1990)
  2. Popkov VI, "Higher Electric Fields in Technological Processes: Electron-Ion Technology," p. 238, Energiy, Moscow, 1969 (1969)
  3. Dovgyalo VA, Yurkevich OR, "Polymer Composites and Coatings Based on Dispersed Polymers," p. 256, Science and Technics, Minsk, 1992 (1992)
  4. Mironov VS, "Electrophysical Activation of Polymer Materials at Frictional and Electrical Treatment," Doctor of Sci. Thesis, p. 335, Metal-Polymer Research Institute, Gomel, 1998 (1998)
  5. Itoh T, Kohyama H, Konishi T, Proc. of IUPAC 32nd Intern. Symp. Macromol., Kyoto, 736 (1988)
  6. Hozaca M, Ando K, Mem. Fac. Eng., 18, 47 (1977)
  7. Marand H, Stein RS, J. Polym. Sci. B-Polym. Phys., 27, 1089 (1989) 
  8. Zhandarov SF, Dovgyalo VA, Pisanova EV, Mironov VS, Mech. Compos. Mater., 29, 267 (1993)
  9. Zhandarov SF, Dovgyalo VA, Pisanova EV, J. Adhes. Sci. Technol., 8(9), 995 (1994)
  10. Drzal LT, Padaki S, Vyakarnam MN, Fernandes JF, "Polymer Powder Technology," eds. by M. Narkis and N. Rosenzweig, ch. 18, p. 511, J. Wiley & Sons, Ltd., Chichester, 1995 (1995)
  11. Mironov VS, Park M, Compos. Sci. Technol., in press
  12. Vyakarnam MN, Drzal LT, Plast. Eng., January, 35 (1997)
  13. Mironov VS, Skryabin OB, Yurkevich OR, Proc. Int. Conf. Adv. In Materials & Processing Technol., 24-27 Aug., Dublin City Univ., vol. 1, 435, 1993 (1993)
  14. Mallick PK, "Fiber-reinforced Composites," p. 310, Marcel Dekker, N.Y., 1988 (1988)
  15. Mironov VS, "Conductive Polymer Composites: Materials, Technology and Applications," p. 64, BNIITI, Minsk, 1991 (1991)
  16. Knoblach GM, SAMPE J., 25, 9 (1989)
  17. Bershev EN, "Physical Fundamentals of the Electroflocation Technology," p. 127, Leningrad State University, Leningrad, 1984 (1984)
  18. Bershev EN, "Electroflocation(the deposition of a pile in electric field)," p. 229, Light Industry, Moscow, 1977 (1977)
  19. Barden EL, "Floked Materials, Technology and Aplications," p. 294, Noyes Data Corp., Park Ridge, N.Y., 1972 (1972)
  20. Braverman BG, Surgucheva AI, Sorina TG, Konikova TA, Korneeva VS, Plasticheskie Massy, 3, 47 (1978)
  21. Mironov VS, Skryabin OB, Dovgyalo VA, Yurkevich OR, J. Friction Wear, 16, 129 (1995)
  22. Kozo K, Kogyo Zairyo, 47, 39 (1999)
  23. Istuo Y, Kogyo Zairyo, 42, 31 (1994)
  24. Kiesche E, Plast. Technol., Nov., 77 (1985)
  25. Weber M, Kamal MR, Polym. Compos., 18, 711 (1997) 
  26. Sugino M, Kogyo Zairyo, 19(5), 5 (1999)
  27. Kusy RP, "Metal-Filled Polymers," ed. by S.K. Bhattacharya, Chap. 1, Marcel Dekker, New York, 1986 (1986)
  28. Hasegawa T, "Recent Advances of Polymer Compounds," p. 14, CMC, Tokyo, 1993 (1993)