화학공학소재연구정보센터
Langmuir, Vol.32, No.35, 8900-8908, 2016
Patchy Supramolecular Bottle-Brushes Formed by Solution Self-Assembly of Bis(urea)s and Tris(urea)s Decorated by Two Incompatible Polymer Arms
In an attempt to design urea-based Janus nanocylinders through a supramolecular approach, nonsymmetrical bis(urea)s and tris(urea)s decorated by two incompatible polymer arms, namely, poly(styrene) (PS) and poly(isobutylene) (PIB), were synthesized using rather straightforward organic and polymer chemistry techniques. Light scattering experiments revealed that these molecules self-assembled in cydohexane by cooperative hydrogen bonds. The extent of self-assembly was limited for the bis(urea)s. On the contrary, reasonably anisotropic 1D structures (small nanocylinders) could be obtained with the tris(urea)s (N-agg similar to 50) which developed six cooperative hydrogen bonds per molecule. H-1 transverse relaxation measurements and NOESY NMR experiments in cydohexane revealed that perfect Janus nanocylinders with one face consisting of only PS and the other of PIB were not obtained. Nevertheless, phase segregation between the PS and PIB chains occurred to a large extent, resulting in patchy cylinders containing well separated domains of PIB and PS chains. Reasons for this behavior were proposed, paving the way to improve the proposed strategy toward true urea-based supramolecular Janus nanocylinders.