Journal of Power Sources, Vol.327, 423-431, 2016
Ce-doped alpha-FeOOH nanorods as high-performance anode material for energy storage
Ce-doped alpha-FeOOH nanorods with high yields were conveniently prepared by a hydrothermal method followed by an acid-treatment process. It is found that Ce uniformly distributes in the alpha-FeOOH nanorod nanostructures through elemental mapping analysis. The 0.5 wt% Ce-doped alpha-FeOOH electrode displayed excellent cycling performance with a high discharge capacity of 830 mA h g(-1) after 800 charge/discharge cycles at a high current of 2000 mA g(-1). The enhanced electrochemical performance can be attributed to the improved electronic conductivity, Li-ion diffusion kinetics and structure stability after Ce doping. Furthermore, a 0.5 wt% Ce-doped alpha-FeOOH//LiFePO4 lithium ion cell with an initial discharge capacity of 580 mA h g(-1) at 1000 mA g(-1) based on the total weight of the anode material has been fabricated for the first time. The obtained 0.5 wt% Ce-doped alpha-FeOOH electrode as anode material for sodium-ion batteries also exhibits a high initial discharge capacity of 587 mA h g(-1) at 100 mA g(-1). (C) 2016 Elsevier B.V. All rights reserved.