Polymer(Korea), Vol.23, No.6, 892-901, November, 1999
화학적 개질과 층간 Weld-Line이 PP/유리 장섬유 복합재료의 물성에 미치는 영향에 대한 연구
The Effect of Chemical Modification and Interlaminar Weld-Line on Physical Properties of PP/Continuous Glass Fiber Composite Systems
E-mail:
초록
본 신험에서는 필름적층법을 이용하여 PP/유리섬유 복합재료를 제조할 때 maleic anhydride modified polypropylene (MPP) 함량의 변화와 성형시 발생하는 층간 weld-line이 복합재료의 기계적 물성에 미치는 영향을 연구하였다. 열가소성 복합재료의 필름적층 공정에 있어서 함침거리와 함침시간을 계산한 결과, weld-line이 존재할 경우가 존재하지 않은 경우보다 함침거리가 짧기 때문에 함침압력은 작고 함침시간은 약 5배정도 빠른 것을 알 수 있다. Three-point bending test와 SEM 사진으로부터 MPPDML 함량이 증가함에 따라 복합재료가 우수한 접착력을 나타낸다는 것을 알 수 있었으며, 충격시험에서는 PP만을 사용한 복합재료가 높은 충격 에너지를 흡수하다는 것으로 나타났다. 또한 인장강도 시험에서는 PP와 MPPDML 함량이 1 : 1로 될 때 가장 우수한 물성을 나타냈으며 weld-line이 존재하는 경우 더욱 우수한 충격강도를 나타내었다.
In this study, the effect ofthe concentration of anhydride modified polypropylene(MPP) and the interlaminar weld-line on mechanical properties offil stacking processed polypropylene/glass fabric composite systems were investigated. A thermally-expandabel rubber tool was used to impregnate the matrix by maintaining a relatively uniform pressure. A pseudo-steady state approximation was usedtocalculate the resin-impregnation time and at the center and from two film at the top and bottom sides, the two-film process produced an interlaminar weld-line at the laminate center, and took one-fourth shorter impregnation adhesive strength between fiber and matrix. The impact strength of PP matrix only composite was higher than that of MPP laminates, and interlaminar weld-line at the laminate center seemed to increase the impact strength. The optimum content of MPP was observed to be ∼50% in tensile tests.
- Rijsdijk HA, Constant M, Peijs AAJM, Compos. Sci. Technol., 48, 161 (1993)
- Yasuda H, Hsu TS, Brandt ES, Reiley CN, J. Polym. Sci. A: Polym. Chem., 16, 415 (1978)
- Rieke JK, Hart GM, Saunders FL, J. Polym. Sci. C: Polym. Lett., 4, 589 (1963)
- Hayakawa K, Kawase K, Yamakita H, J. Polym. Sci. A: Polym. Chem., 10, 2603 (1974)
- Yamakawa S, Yamamoto F, J. Appl. Polym. Sci., 25, 2541 (1980)
- Filbert C, Proc. SPE Ann. Conf., Bookfield, 394 (1968)
- Price RV, U.S. Patent, 3,742,106 (1973)
- Klein AJ, Adv. Compos., 2(3), 37 (1987)
- van West BP, Price RB, Advani SG, Polym. Compos., 12, 417 (1991)
- Silverman EM, Polym. Compos., 8, 8 (1987)
- Hiscock DF, Bigg DM, Polym. Compos., 10, 145 (1989)
- Habbauer P, Plast. Eng., Aug., 37 (1973)
- Hageman E, Plast. Eng., Aug., 67 (1973)
- Nadkrni VM, Ayldhya SR, Polym. Eng. Sci., 33(6), 358 (1993)
- Kim D, Koo M, Nam J, Lee Y, Seo M, Lee S, Proc. KSR, November 20-21, 158 (1998)
- Carlsson LA, Pipes RB, "Experimental Characterization of Advanced Composite Materials," p. 58, Prentice-Hall, New Jersey (1987)
- Darcy H, "Les Fontaines Publiques de la Ville de Dijon," p. 306, Dalmont, Paris (1856)
- Gutowski TG, Cai Z, Proc. of Manufacturing International, Vol. 4, p. 13, ASME (1988)
- Gutowski TG, Cai Z, Soll WE, Bonhomme L, Proc. Am. Soc. Compos., October 7-9, 154 (1986)
- Gutowksi TG, Morigaki T, Cai Z, J. Compos. Mater., 21(7), 172 (1987)
- Gutowski TG, SAMPEQ, 16(4), 58 (1985)
- Gutowski TG, Cai Z, Kinergy J, Wineman SJ, SAMPEQ, 17(4), 54 (1986)
- Gutowski TG, Cai Z, Kinergy J, Boucher D, ANTEC, 1316 (1986)
- Gutowski TG, J. Compos. Mater., 20(6), 536 (1986)
- Gutowski TG, Cai Z, Bauer S, Boucher D, Kinergy J, Wineman SJ, J. Compos. Mater., 21(7), 650 (1987)
- Lee WI, Springer GS, J. Compos. Mater., 33, 661 (1988)
- Lin HH, Ranganathan S, Advani SG, "Consolidation of Continuous-Fiber System, Flow and Rheology in Polymer Composites Manufacturing," ed. S.G. Advani, Elsevier Science, New York (1984)
- Kim DW, Master's Thesis, SungKyunKwan University (1998)
- Bigg DM, Bradbury EJ, Polym. Eng. Sci., 32(4), 287 (1992)
- Mallick PK, "Fiber-Reinforced Composites," 2nd ed., p. 216, Marcel Dekker, New York (1993)