화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.6, 892-901, November, 1999
화학적 개질과 층간 Weld-Line이 PP/유리 장섬유 복합재료의 물성에 미치는 영향에 대한 연구
The Effect of Chemical Modification and Interlaminar Weld-Line on Physical Properties of PP/Continuous Glass Fiber Composite Systems
E-mail:
초록
본 신험에서는 필름적층법을 이용하여 PP/유리섬유 복합재료를 제조할 때 maleic anhydride modified polypropylene (MPP) 함량의 변화와 성형시 발생하는 층간 weld-line이 복합재료의 기계적 물성에 미치는 영향을 연구하였다. 열가소성 복합재료의 필름적층 공정에 있어서 함침거리와 함침시간을 계산한 결과, weld-line이 존재할 경우가 존재하지 않은 경우보다 함침거리가 짧기 때문에 함침압력은 작고 함침시간은 약 5배정도 빠른 것을 알 수 있다. Three-point bending test와 SEM 사진으로부터 MPPDML 함량이 증가함에 따라 복합재료가 우수한 접착력을 나타낸다는 것을 알 수 있었으며, 충격시험에서는 PP만을 사용한 복합재료가 높은 충격 에너지를 흡수하다는 것으로 나타났다. 또한 인장강도 시험에서는 PP와 MPPDML 함량이 1 : 1로 될 때 가장 우수한 물성을 나타냈으며 weld-line이 존재하는 경우 더욱 우수한 충격강도를 나타내었다.
In this study, the effect ofthe concentration of anhydride modified polypropylene(MPP) and the interlaminar weld-line on mechanical properties offil stacking processed polypropylene/glass fabric composite systems were investigated. A thermally-expandabel rubber tool was used to impregnate the matrix by maintaining a relatively uniform pressure. A pseudo-steady state approximation was usedtocalculate the resin-impregnation time and at the center and from two film at the top and bottom sides, the two-film process produced an interlaminar weld-line at the laminate center, and took one-fourth shorter impregnation adhesive strength between fiber and matrix. The impact strength of PP matrix only composite was higher than that of MPP laminates, and interlaminar weld-line at the laminate center seemed to increase the impact strength. The optimum content of MPP was observed to be ∼50% in tensile tests.
  1. Rijsdijk HA, Constant M, Peijs AAJM, Compos. Sci. Technol., 48, 161 (1993) 
  2. Yasuda H, Hsu TS, Brandt ES, Reiley CN, J. Polym. Sci. A: Polym. Chem., 16, 415 (1978)
  3. Rieke JK, Hart GM, Saunders FL, J. Polym. Sci. C: Polym. Lett., 4, 589 (1963)
  4. Hayakawa K, Kawase K, Yamakita H, J. Polym. Sci. A: Polym. Chem., 10, 2603 (1974)
  5. Yamakawa S, Yamamoto F, J. Appl. Polym. Sci., 25, 2541 (1980)
  6. Filbert C, Proc. SPE Ann. Conf., Bookfield, 394 (1968)
  7. Price RV, U.S. Patent, 3,742,106 (1973)
  8. Klein AJ, Adv. Compos., 2(3), 37 (1987)
  9. van West BP, Price RB, Advani SG, Polym. Compos., 12, 417 (1991) 
  10. Silverman EM, Polym. Compos., 8, 8 (1987) 
  11. Hiscock DF, Bigg DM, Polym. Compos., 10, 145 (1989) 
  12. Habbauer P, Plast. Eng., Aug., 37 (1973)
  13. Hageman E, Plast. Eng., Aug., 67 (1973)
  14. Nadkrni VM, Ayldhya SR, Polym. Eng. Sci., 33(6), 358 (1993) 
  15. Kim D, Koo M, Nam J, Lee Y, Seo M, Lee S, Proc. KSR, November 20-21, 158 (1998)
  16. Carlsson LA, Pipes RB, "Experimental Characterization of Advanced Composite Materials," p. 58, Prentice-Hall, New Jersey (1987)
  17. Darcy H, "Les Fontaines Publiques de la Ville de Dijon," p. 306, Dalmont, Paris (1856)
  18. Gutowski TG, Cai Z, Proc. of Manufacturing International, Vol. 4, p. 13, ASME (1988)
  19. Gutowski TG, Cai Z, Soll WE, Bonhomme L, Proc. Am. Soc. Compos., October 7-9, 154 (1986)
  20. Gutowksi TG, Morigaki T, Cai Z, J. Compos. Mater., 21(7), 172 (1987)
  21. Gutowski TG, SAMPEQ, 16(4), 58 (1985)
  22. Gutowski TG, Cai Z, Kinergy J, Wineman SJ, SAMPEQ, 17(4), 54 (1986)
  23. Gutowski TG, Cai Z, Kinergy J, Boucher D, ANTEC, 1316 (1986)
  24. Gutowski TG, J. Compos. Mater., 20(6), 536 (1986)
  25. Gutowski TG, Cai Z, Bauer S, Boucher D, Kinergy J, Wineman SJ, J. Compos. Mater., 21(7), 650 (1987)
  26. Lee WI, Springer GS, J. Compos. Mater., 33, 661 (1988)
  27. Lin HH, Ranganathan S, Advani SG, "Consolidation of Continuous-Fiber System, Flow and Rheology in Polymer Composites Manufacturing," ed. S.G. Advani, Elsevier Science, New York (1984)
  28. Kim DW, Master's Thesis, SungKyunKwan University (1998)
  29. Bigg DM, Bradbury EJ, Polym. Eng. Sci., 32(4), 287 (1992) 
  30. Mallick PK, "Fiber-Reinforced Composites," 2nd ed., p. 216, Marcel Dekker, New York (1993)