Polymer(Korea), Vol.23, No.6, 861-868, November, 1999
물리화학적 처리에 의한 다공성 PLGA 지지체의 적심성 증가
Improvement of Wetting Property for Porous PLGA Scaffold by Physicochemical Treatment
E-mail:
초록
유화동결건조 방법으로 제조된 다공성 poly(L-lactide-co-glycolide) (75:25 by mole ratio of lactide to glycolide, PLGA)지지체의 친수성과 배양액 침투성을 증가시키기 위하여 물리화학적 처리를 수행하였다. 물리적 방법으로는 코로나 방전 및 플라즈마 처리가, 화학적인 방법으로는 70%, 염소산, 50% 황산 및 0.5 N 가소소다 수용액으로 처리하였다. 푸른 염료 수용액으로 측정된 침투속도는 염소산, 50% 황산 및 0.5 N 가성소다 처리의 순으로 나타났으며 물리적 처리 방법은 본 연구의 목적에는 부합되지 않는 것으로 판단되었다. 처리된 PLGA 표면의 물접촉각 및 electron spectroscopy for chemical analysis의 분석결과, 본 처리 방법에 의하여 친수성 및 적심성이 증가되었음을 확인하였으며 이는 PLGA 주쇄에 산소를 포함하는 관능기의 생성에 기인한 것으로 사료되었다. 따라서 본 방법에 의하여 처리된 PLGA 지지체는 소수성에서 친수성으로 개질되었으므로 조직세포의 배양 등에 긍정적인 영향을 끼칠 것으로 사료되었다.
To improve the wetting property and hydrophilicity of porous poly(L-lactide-co-glycolide) (75 : 25) mole ratio of lactide to glycolide, PLGA) scaffold fabricated by emulsion freeze-drying method, the physicochemical treatments has been demonstrated. Chemical treatments were 70% perchloric acid, 50% sulfuric acid and 0.5 N sodium hydroxide solution and physical methods were corona and plasma treatment. The wetting property of chemically treated PLGA scaffold ranked in the order of 70% perchloric acid, 50% sulfuric acid and 0.5N sodium hydroxide solution by blue dye intrusion experiment, whereas physical methods were no effects. It was observed that wettability increased by water contact angle measurement and electron spectroscopy for chemical analysis. This result provides evidence for the incorpoing physicochemical treatment. It can be suggested that chemical treatment method may be useful uniformly seeding porous biodegradable PLGA scaffolds for the application of tissue engineering area.
- Langer R, Vacanti JP, Science, 260, 920 (1993)
- Khang G, Lee JH, "The Properties of Biomaterials," in "Tissue Engineering: Concepts and Applications," J.J. Yoo and I. Lee eds., chap. 4, Korea Med. Pub. Co., Seoul (1998)
- Khang G, Lee HB, Chem. World, 37(3), 46 (1997)
- Khang G, Lee HB, J. Biomed. Mater. Res., 20(1), 1 (1999)
- Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R, J. Pediatr. Surg., 23, 3 (1998)
- Vacanti CA, Langer R, Schloo B, Vacanti JP, Plast. Reconstr. Surg., 88, 753 (1991)
- Cima LG, Vacanti JP, Ingber D, Mooney D, Langer R, J. Biomech. Eng., 113, 143 (1991)
- Langer R, Cima LG, Tamada JA, Wintermantel E, Biomaterials, 11, 738 (1990)
- Holland SJ, Tighe BJ, Gould PL, J. Control. Release, 4, 155 (1986)
- Khang G, Jeon JH, Lee JW, Cho SC, Lee HB, Bio-Med. Mater. Eng., 7, 357 (1997)
- Khang G, Lee SJ, Lee JH, Kim YS, Lee HB, Bio-Med. Mater. Eng., to appear (1999)
- Williams DF, Mort E, J. Bioeng., 1, 231 (1997)
- Bostaman O, J. Bone Joint Surg., 73A(1), 148 (1991)
- Singhal JP, Singh H, Ray AR, Rev. Macromol. Chem. Phys., C28, 475 (1988)
- Hollinger OJ, Schmitz JP, J. Oral Maxillofac. Surg., 45, 594 (1987)
- Khang G, Cho JC, Lee JW, Rhee JM, Lee HB, Bio-Med. Mater. Eng., 9, 46 (1999)
- Khang G, Jeon JH, Cho JC, Lee HB, Polym.(Korea), 23(3), 471 (1999)
- Wald HL, Sarakinos G, Lyman MD, Mikos AG, Vacanti JP, Langer R, Biomaterials, 14, 270 (1993)
- Smith DM, Hua DW, Earl WL, MRS Bull., 19(4), 44 (1994)
- Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R, Biomaterials, 14(5), 323 (1993)
- Lee JH, Khang G, Park KH, Lee HB, Andrade JD, J. Biomed. Mater. Res., 10, 43 (1989)
- Lee JH, Khang G, Park KH, Lee HB, Andrade JD, J. Biomed. Mater. Res., 10, 195 (1989)
- Khang G, Kang YH, Park JB, Lee HB, Bio-Med. Mater. Eng., 6, 335 (1996)
- Khang G, Lee HB, Park JB, Bio-Med. Mater. Eng., 5, 245 (1996)
- Ritter HL, Drake LC, Ind. Eng. Chem., 17, 782 (1945)
- Healy KE, Lom B, Hockberger PE, Biotechnol. Bioeng., 43(8), 792 (1994)
- Khang G, Jeong BJ, Lee HB, Park JB, Bio-Med. Mater. Eng., 5, 259 (1995)
- Gombotz WR, Hoffman AS, CRC. Crit. Rev. Biocompatibility, 4, 1 (1987)