화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.29, 5773-5790, 2016
Ultrafast Spectroscopic Signatures of Coherent Electron-Transfer Mechanisms in a Transition Metal Complex
The prevalence of ultrafast electron-transfer processes in light harvesting materials has motivated a deeper understanding of coherent reaction mechanisms. Kinetic models based on the traditional (equilibrium) form of Fermi's Golden Rule are commonly employed to understand photoinduced electron-transfer dynamics. These models fail in two ways when the electron-transfer process is fast compared to solvation dynamics and vibrational dephasing. First, electron-transfer dynamics may be accelerated if the photoexcited wavepacket traverses the point of degeneracy between donor and acceptor states in the solvent coordinate. Second, traditional kinetic models fail to describe electron-transfer transitions that yield products which undergo coherent nuclear motions. We address the second point in this work. Transient absorption spectroscopy and a numerical model are used to investigate coherent back-electron-transfer mechanisms in a transition metal complex composed of titanium and catechol, [Ti(cat)(3)](2-). The transient absorption experiments reveal coherent wavepacket motions initiated by the back-electron-transfer process. Model calculations suggest that the vibrationally coherent product states may originate in either vibrational populations or coherences of the reactant. That is, vibrational coherence may be produced even if the reactant does not undergo coherent nuclear motions. The analysis raises a question of broader significance: can a vibrational population-to-coherence transition (i.e., a nonsecular transition) accelerate electron-transfer reactions even when the rate is slower than vibrational dephasing?