Polymer(Korea), Vol.23, No.6, 809-814, November, 1999
사용 환경조건이 에폭시/탄소섬유 복합소재 전기전도도에 미치는 영향
Effect of Environmental Conditions on the Electrical Conductivity of Epoxy/Carbon Fiber Composites
E-mail:
초록
열악한 환경조건에서 에촉시/탄소섬유 복합재료를 사용하였을 때 복합재료로의 수분 확산 및 온도 상승이 에촉시/탄소섬유 복합재료의 전기전도도에 미치는 영향을 살펴보았다. 특 히 에폭시/탄소섬유 복합재료 제조시 프리프렉의 적층 방향에 따른 이들의 변화를 중점적으로 고찰하였다. 수분 확산이 진행됨에 따라 ,ass uptake의 양이 증가하는 것을 알 수 있으며 탄소섬유가 여러 방향으로 배열된 에촉시/탄소섬유 복합재료일수로 mass uptake값이 큼을 알 수 있었다. 수분확산은 매트릭스로 사용된 에촉시와 탠소섬유의 debonding을 유발시키고 그 결과, 탄소섬유 방향으로의 전기전도도가 감소함을 확인하였다. 고온에서 에폭시/탄소섬유 복합재료를 사용할 경우 온도의 증가에 따른 매트릭스의 열팽챙에 의하여 전기전도도가 감소함을 알 수 있으며 지속적인 가열 및 냉각의 반복에 으하여 전기전도도의 감소가 심해짐을 알 수 있었다. 아울러 전도성 첨가제의 첨가에 의하여 이를 최소화할 수 있음을 확인하였다.
The effect of environmental conditions on the electrical conductivity of epoxy/carbon fiber composites has been inbestigated. It was shown that mass uptake due to the water diffusion to epoxy/carbon composites increased as a function of water diffusion time. As a result, the electrical conductivity of epoxy/carbon fiber composite decreased due to the debonding between epoxy matrix and carbon fiber. It was found that epoxy/carbon fiber composite with multi-directional carbon fiber lay up has higher conductivity drop due to the increase of capillary diffusion between epoxy and carbon fiber. Epoxy/carbon fiber composites used at high temperature showed low electrical conductivity due to the thermal expansion of matrix materials. This phenomena is more pronounced in composites used in repeated heating and cooling conditions. In addition, it was found that this phenomena could be minimized by adding conductive additives to composites.
Keywords:electrical conductivity;epoxy/carbon fiber composite;envirommental condition;fiber orientation
- White DRJ, Mardiguian M, "Electromagnetic Shilding, A Handbook Series on Electromagnetic Interference and Compatibility," vol. 2, Interference Control Technologies Ind., Gainsville, Virginia (1988)
- Mardinguian M,, "Electrostatic Discharge: Understanding, Simulate and Fix Problem," Interference Control Technologies Ind. Gainsville, Virginia (1986)
- Gurland J, Trans. Metall. AIME, 236, 642 (1966)
- Davenport DE, Polym. News, 8, 134 (1982)
- Reich S, J. Mater. Sci., 22, 3391 (1987)
- Sichel EK, "Carbon Black Polymer Composites," Marcel Dekker, New York (1982)
- Medalla AI, Rubber Chem. Technol., 59, 432 (1986)
- Chung SK, Noh ST, Im SS, J. Korean Fiber Soc., 28, 829 (1991)
- Shacklette LW, Colaneri NF, Kulkarni VG, Wessling B, Antec Technicla Paper, 665 (1991)
- Rowland SM, Blythe AR, Antec Technical Paper, 668 (1991)
- Skotheim TA, "Handbook of Conducting Polymer," Dekker, New York (1986)
- Lee WI, Springer GS, J. Compos. Mater., 18, 357 (1984)
- Kim HC, See SK, J. Phys. D. Appl. Phys., 23, 916 (1990)
- Martinsson J, White JL, Polym. Compos., 7, 302 (1986)
- Ra DJ, Yoon B, Kang HJ, Polym.(Korea), submitted
- Ramadin Y, Jawad SA, Musameh SM, Ahmad M, Zihlif AM, Paesano A, Martuscelli E, Ragosta G, Polym. Int., 34, 145 (1994)
- Ahamd MS, Abdelazzes MK, Zihlif AM, J. Mater. Sci., 25, 5019 (1990)
- Haj-Daoud AN, Zihlif AM, Abdeazzes MK, Mater. Lett., 15, 104 (1992)
- Mazor A, Broutman LJ, Eckstein BH, Polym. Eng. Sci., 18, 341 (1978)
- Shen CH, Springer GS, J. Cpmposites Mat., 41, 526 (1979)
- Marom G, Broutman LJ, Polym. Compos., 2, 132 (1981)
- Donnet J, Bansal RC, "Carbon Fibers," chap. 6, Dekker, New York (1990)