Energy & Fuels, Vol.30, No.7, 6098-6102, 2016
Importance of Vanadium-Catalyzed Oxidation of SO2 to SO3 in Two Stroke Marine Diesel Engines
Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur and ash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinder oxidation of SO2 to SO3, promoting the formation of sulfuric acid and enhancing problems of corrosion. In the present work, the kinetics of the catalyzed oxidation was studied in a fixed-bed reactor at atmospheric pressure. Vanadium oxide nanoparticles were synthesized by spray flame pyrolysis, i.e., by a mechanism similar to the mechanism leading to the formation of the catalytic species within the engine. Experiments with different particle compositions (vanadium/sodium ratio) and temperatures (300-800 degrees C) show that both the temperature and sodium content have a major impact on the oxidation rate. Kinetic parameters for the catalyzed reaction are determined, and the proposed kinetic model fits well with the experimental data. The impact of the catalytic reaction is studied with a phenomenological zero-dimensional (OD) engine model, where fuel oxidation and SO, formation is modeled with a comprehensive gas-phase reaction mechanism. Results indicate that the oxidation of SO2 to SO3 in the cylinder is dominated by gas-phase reactions and that the vanadium-catalyzed reaction is at most a very minor pathway.