화학공학소재연구정보센터
Electrochimica Acta, Vol.210, 915-924, 2016
Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials
Ni-Co hydroxides have been extensively studied as electrode materials for hybrid supercapacitors. In this work, we report an effective method to significantly improve the rate performance of Ni-Co hydroxides through engineering the dual-channel structure and tuning the valence state of Cobalt, which is realized through a facile in suit chemical treatment of phosphites. The specific capacitance of the obtained flower-like Ni-Co hydroxide electrode is 1425 F g(-1) at 20 A g(-1), which is 83.9% of 1698 F g(-1) at 1 A g(-1). Simultaneously, a moderate cycling stability with an efficiency of 80.6% after cycling 4000 times at a current density of 10 A g(-1) is obtained. Moreover, an energy density of 40.1 Wh kg(-1) at a power density of 801.2 W kg(-1) has been achieved in an assembled aqueous asymmetric supercapacitor, using Ni-Co hydroxide as positive electrode material and activated carbon as negative electrode material. Our study shows that the chemical treatment evokes morphology and phase transformation and induces partial Co-2 conversion to a more conductive Co3+ state. And the electrochemical performance has a significant relationship with the microstructure and valence state of Cobalt. (C) 2016 Elsevier Ltd. All rights reserved.