화학공학소재연구정보센터
Applied Energy, Vol.179, 888-898, 2016
Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine
The fuel injection system in two stroke engine is very important, therefore the hydraulic electronic unit injector system is developed and the injection characteristics of hydraulic electronic unit injector are investigated. Firstly the HFPE and the hydraulic electronic unit injector working principle are analyzed, and then PID control strategy is built by engine demand. In order to validate the feasibility of hydraulic electronic unit injector, the prototype test bench is established. The specific measurement principle is presented. Further the injection characteristics, such as the effect of injection pressure on injection delay and the effect of engine frequency on injection delay, are analyzed. In order to optimize the engine stability performance, the BDC control based on fuel injection control is investigated. The load control based on fuel injection is also discussed and the BDC feedforward control with the load variation is investigated. Experiment results of stead engine operation shows that the hydraulic electronic unit injector system based on PID control can be satisfied with the engine operation demand. In addition, cycle fuel injection quantity is tested online and off-line engine operation. It is obvious that the fuel injection quantity is affected by the hydraulic pressure. The fuel injection quantity variation can be improved with decreasing the fluctuation of drive pressure or adopting more suitable oil common rail instead of connected with exhaust valve hydraulic drive oil-way. The energy flow in HFPE is analyzed and the hydraulic output energy can be optimized by selecting suitable hydraulic valves parameters. The fuel injection quantity should be designed by the energy balance and the stable operation requirement in spite of the higher thermal efficiency. (C) 2016 Elsevier Ltd. All rights reserved.