화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.5, 512-515, October, 2016
ZnO를 대체 가능한 새로운 Viologen 유도체가 적용된 역구조 고분자 태양전지
ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer
E-mail:
초록
새로운 viologen 유도체인 1,1’-bis(3,4-dihydroxybutyl)-[4,4’-bipyridine]-1,1’-diium bromide (V-Pr-2OH)을 합성하여 PTB7 : PC71BM Blend를 기반으로 하는 inverted polymer solar cells (iPSCs)에 cathode buffer layer로 적용하였다. V-Pr-2OH이 cathode buffer layer로 적용된 PSCs (ITO/V-Pr-2OH/PTB7 : PC71BM/MoO3/Ag)의 power conversion efficiency (PCE)는 7.28% 이었다. V-Pr-2OH이 없는 iPSCs (ITO/ZnO/PTB7 : PC71BM/MoO3/Ag)의 PCE (7.41%)에 상응하는 값이다. 그러므로 본 연구에서는 높은 열처리 공정이 필요한 ZnO가 배제된, 즉 높은 온도의 열처리 없이도 제작 가능한 PSC에 대한 가능성을 보여주고 있다.
A new viologen derivative namely 1,1’-bis(3,4-dihydroxybutyl)-[4,4’-bipyridine]-1,1’-diium bromide (V-Pr-2OH) was synthesized and applied as a cathode buffer layer to inverted polymer solar cells (PSCs) based on the blend of PTB7 : PC71BM. PSCs with the structure of ITO/V-Pr-2OH/PTB7 : PC71BM/MoO3/Ag as the cathode buffer layer showed the power conversion efficiency (PCE) up to 7.28%, which is comparable to that of the PSCs with the structure of ITO/ZnO/PTB7 : PC71BM/MoO3/Ag (7.44%) in the absence of V-Pr-2OH. This study demonstrates that a highly efficient PSCs without any high temperature heat treatment can be obtained.
  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  2. Huynh WU, Dittmer JJ, Alivisatos AP, Science, 295, 2425 (2002)
  3. Gunes S, Neugebauer H, Sariciftci NS, Chem. Rev., 107(4), 1324 (2007)
  4. Lu LY, Zheng TY, Wu QH, Schneider AM, Zhao DL, Yu LP, Chem. Rev., 115(23), 12666 (2015)
  5. Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H, Nat. Photonics, 9, 403 (2015)
  6. Kan B, Li MM, Zhang Q, Liu F, Wan XJ, Wang YC, Ni W, Long GK, Yang X, Feng HR, Zuo Y, Zhang MT, Huang F, Cao Y, Russell TP, Chen YS, J. Am. Chem. Soc., 137(11), 3886 (2015)
  7. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP, Adv. Mater., 22(20), E135 (2010)
  8. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y, Nat. Photonics, 6, 591 (2012)
  9. Ma WL, Iyer PK, Gong X, Liu B, Moses D, Bazan GC, Heeger AJ, Adv. Mater., 17(3), 274 (2005)
  10. Jo MY, Ha YE, Kim JH, Sol. Energy Mater. Sol. Cells, 107, 1 (2012)
  11. Jo MY, Ha YE, Kim JH, Org. Electron., 14, 995 (2013)
  12. Lim GE, Ha YE, Jo MY, Park J, Kang YC, Kim JH, ACS Appl. Mater. Interfaces, 5, 6508 (2013)
  13. Wang H, Zhang W, Xu C, Bi X, Chen B, Yang S, ACS Appl. Mater. Interfaces, 5, 26 (2013)
  14. Zhang T, Ceder M, Inganas O, Adv. Mater., 19(14), 1835 (2007)
  15. Lim GE, Ha YE, Jo MY, Park J, Kang YC, Moon SC, Kim HJ, J. Mater. Chem. C, 2, 3820 (2004)
  16. Liu X, Xu R, Duan C, Huang F, Cao Y, J. Mater. Chem. C, 4, 4288 (2016)
  17. Do TT, Hong HS, Ha YE, Lim GE, Won YS, Kim JH, Synth. Met., 198, 122 (2014)
  18. Do TT, Hong HS, Ha YE, Yoo SI, Won YS, Moon MJ, Kim JH, Macromol. Res., 23(4), 367 (2015)
  19. Min C, Shi C, Zhang W, Jiu T, Chen J, Ma D, Fang J, Angew. Chem.-Int. Edit., 52, 3417 (2013)
  20. Liu Z, Ouyang X, Peng R, Bai Y, Mi D, Jiang W, Facchetti A, Ge Z, J. Mater. Chem. A, 4, 2530 (2016)
  21. Li X, Zhang W, Wang X, Wu Y, Gao F, Fang J, J. Mater. Chem. A, 3, 504 (2015)
  22. Seo JH, Gutacker A, Sun YM, Wu HB, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC, J. Am. Chem. Soc., 133(22), 8416 (2011)
  23. Nam S, Jang J, Cha H, Hwang J, An TK, Park S, Park CE, J. Mater. Chem., 22, 5543 (2012)
  24. Zhou HQ, Zhang Y, Seifter J, Collins SD, Luo C, Bazan GC, Nguyen TQ, Heeger AJ, Adv. Mater., 25(11), 1646 (2013)
  25. Tan ZK, Vaynzof Y, Credgington D, Li C, Casford MTL, Sepe A, Huettner S, Nikolka M, Paulus F, Yang L, Sirringhaus H, Greenham NC, Friend RH, Adv. Funct. Mater., 24(20), 3051 (2014)
  26. Wang Y, Liu Y, Chen S, Peng R, Ge Z, Chem. Mater., 25, 3196 (2013)
  27. Bagui A, Iyer SSK, Org. Electron., 15, 1387 (2014)
  28. Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM, Adv. Funct. Mater., 13(1), 43 (2003)