화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.5, 598-605, October, 2016
스퍼터링을 이용한 바나듐 합금 박막화에 관한 연구
Characterization of the Vanadium Alloy Thin Films Coated by Sputtering
E-mail:
초록
V-Cr-Y 합금은 높은 투과도와 선택도를 가진 수소 분리막 재료이다. V-Cr-Y 분리막의 투과속도를 증가시키기 위하여 sputtering을 이용한 V-Cr-Y 박막을 제조하고 그 특성을 연구하였다. V-Cr-Y 성분이 각각 89.8%, 10.0%, 0.2%인 타겟을 이용하여 실리콘웨이퍼 위에 박막을 증착시켰으며, EDS 분석을 통해 박막조성이 타겟조성과 일치함을 확인하였다. 스퍼터링 온도와 출력이 증가할수록 박막의 성장속도와 결정크기가 증가하였으며, 압력이 감소할수록 결정구조가 보다 미세하고 치밀해졌다. 최적 스퍼터링 조건은 교류 고주파(RF), 2mTorr, 300W, 상온이었으며, 이 조건으로 제조한 박막을 열처리 하여 수소분리에 적합한 박막을 얻을 수 있었다.
V-Cr-Y alloy is a material for hydrogen separation membrane possessing high transmittance and selectivity. In order to increase the rate of hydrogen permeation flux through the membrane, V-Cr-Y thin film was prepared using a sputtering technique and was investigated focusing on its basic properties. Thin film was deposited on a silicon wafer using a target including V (89.8%), Cr (10.0%) and Y(0.2%), and results of EDS analysis confirm that the ratio of metal in thin film agrees with that in the target. Higher sputtering temperature and power resulted in more rapid growth rate of the thin film and larger size of the crystals, and denser and finer crystal structure was observed when lower pressure was applied. An optimal sputtering condition was found with RF, 2mTorr, 300W and ambient temperature, and a suitable V-Cr-Y thin film for hydrogen separation was obtained upon heat treatment of the thin film prepared in this way.
  1. Kanniche M, Bonnivard RG, Jaud P, Marcos JV, Amann JM, Bouallou C, Appl. Therm. Eng., 30(1), 53 (2010)
  2. Carbo MC, Boon J, Jansen D, van Dijk HAJ, Dijkstra JW, van den Brinka RW, Verkooijenb AHM, Int. J. Greenhouse Gas Control, 3(6), 712 (2009)
  3. NETL, Current and Future Technologies for Gasification-Based Power Generation, DOE/NETL, 2, ES-6(2010).
  4. Kim DW, Kim HG, Um KY, Kim SH, Lee IS, Park JS, Ryi SK, Korean Chem. Eng. Res., 44(2), 160 (2006)
  5. Burkhanov GS, Gorina NB, Kolchugina NB, Roshan NR, Platinum Metals Rev., 55(1), 3 (2011)
  6. Jeon SI, Park JH, J. Hydrol. Eng., 38, 6085 (2013)
  7. Fort D, Farr JPG, Harris IR, J. Less Common Metals, 39(2), 293 (1975)
  8. Symons DM, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 28(3), 655 (1997)
  9. Swansiger WA, Swisher JH, Darginis JP, Schoenfelder CW, J. Phys. Chem., 80(3), 308 (1976)
  10. Lee SW, Park JS, Lee CB, Lee DW, Kim H, Ra HW, Kim SH, Ryi SK, Energy, 66, 635 (2014)
  11. Kong SM, Xiao Y, Kim EH, Chung CW, Korean Chem. Eng. Res., 49(2), 195 (2011)
  12. Lee DY, Chung CW, Korean Chem. Eng. Res., 46(4), 676 (2008)
  13. Hughes R, Membr. Technol., 2001(131), 9 (2001)