Korean Journal of Chemical Engineering, Vol.33, No.10, 2908-2914, October, 2016
Potential industrial application of Actinobacillus succinogenes NJ113 for pyruvic acid production by microaerobic fermentation
E-mail:
Actinobacillus succinogenes NJ113 is capable of microaerobic fermentation, which offers the possibility of a novel type of pyruvic acid production. A dissolved oxygen environment with stirring at 300 rpm was a key factor in the fermentative production of a maximum concentration of pyruvic acid. Potassium carbonate (K2CO3) was found to have a role in promoting pyruvic acid production, influencing the concentration of pyruvic acid and production of the by-product succinic acid. The final titer of pyruvic acid production was 36.8±0.1 g L-1 with an overall yield of
0.639±0.056 g g-1 glucose and 3.12±0.03mmol g-1 dry cell weight h-1. Significance and impact of the study: This study is the first to illustrate the advantage of using Actinobacillus succinogenes NJ113 with no genetic modification under microaerobic conditions for the production of pyruvic acid.
Keywords:Actinobacillus succinogenes;Dissolved Oxygen Environment;Microaerobic Fermentation;Potassium Carbonate;Pyruvic Acid
- Paul GC, Thomas CR, Adv. Biochem. Eng./Biotechnol., 60, 1 (1998)
- McKinlay JB, Vieille C, Zeikus JG, Appl. Microbiol. Biotechnol., 76(4), 727 (2007)
- Li Y, Chen J, Lun SY, Appl. Microbiol. Biotechnol., 57(4), 451 (2001)
- Wang Q, He P, Lu D, Shen A, Jiang N, Lett. Appl. Microbiol., 35, 338 (2002)
- Xu P, Qiu JH, Gao C, Ma CQ, J. Biosci. Bioeng., 105(3), 169 (2008)
- Wendisch VF, Bott M, Eikmanns BJ, Curr. Opin. Microbiol., 9, 268 (2006)
- Wieschalka S, Blombach B, Eikmanns BJ, Appl. Microbiol. Biotechnol., 94(2), 449 (2012)
- McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C, Bmc Genomics, 11, 16 (2010)
- Guettler MV, Rumler D, Jain MK, Int. J. Systematic Bacteriology, 49, 207 (1999)
- Li QA, Wang D, Song ZY, Zhou W, Wu Y, Xing JM, Su ZG, Bioresour. Technol., 101(19), 7665 (2010)
- Xi YI, Chen KQ, Xu R, Zhang JH, Bai XF, Jiang M, Wei P, Chen JY, Biochem. Eng. J., 69, 87 (2012)
- Leonardo MR, Dailly Y, Clark DP, J. Bacteriol., 178, 6013 (1996)
- Martinez I, Bennett GN, San KY, Metabolic Engineering, 12, 499 (2010)
- Seo C, Lee HW, Suresh A, Yang JW, Jung JK, Kim YC, Korean J. Chem. Eng., 31(8), 1433 (2014)
- Sawers G, Curr. Opin. Microbiol., 2, 181 (1999)
- McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C, Metabolic Engineering, 9, 177 (2007)
- Wang J, Zhu JF, Bennett GN, San KY, Metabolic Engineering, 13, 328 (2011)
- Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos MJT, J. Bacteriol., 182, 4934 (2000)
- van Maris AJA, Geertman JMA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MDW, van Dijken JP, Pronk JT, Appl. Environ. Microbiol., 70, 159 (2004)
- Zelic B, Gostovic S, Vuorilehto K, Vasic-Racki B, Takors R, Biotechnol. Bioeng., 85(6), 638 (2004)
- Izumi Y, Matsumura Y, Tani Y, Yamada H, Agric. Biol. Chem., 46, 2673 (1982)
- Yanase H, Mori N, Masuda M, Kita K, Shimao M, Kato N, J. Ferment. Bioeng., 73, 287 (1992)