화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.9, 800-810, September, 2016
Homogeneous synthesis and characterization of sulfonated polyarylethersulfones having low degree of sulfonation and highly hydrophilic behavior
E-mail:
In the present paper, the wettability of polyarylethersulfones (PESs) was promoted through the controlled introduction of sulfonic groups in PES polymeric chain. Homogeneous synthesis using a sulfonated comonomer introduced sulfonic groups while exerting a tight control over the degree of sulfonation (DS) and avoiding the undesired side reactions brought about by heterogeneous sulfonation reactions. A series of sulfonated polyarylethersulfones (SPESs) with very low amounts of sulfonic groups - 0.5, 0.75, and 1 meq SO 3 -* g-1 of polymer - was synthesized via polycondensation using 4,4’-difluorodiphenylsulfone, 4,4’-dihydroxydiphenyl and a sulfonated comonomer, 2,5-dihydroxybenzene-1-sulfonate potassium salt. The presence of sulfonic groups was confirmed by Fourier transform infrared (FTIR) spectra; the macromolecular structure and the real DS of SPESs were determined by 1H NMR; the molecular weights were investigated by size exclusion chromatography (SEC); ion exchange capacity (IEC) values, measured by potentiometric titration, are in good agreement with the experimental DS. The polyelectrolyte effect was studied on intrinsic viscosity (IV) measurements. The effect of DS on the thermal properties of SPES membranes was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC); wetting properties were characterized by static water contact angle (SWCA) measurements on membranes obtained via solution casting. The results showed that an increased DS results in higher glass transition temperatures (T g) and lower water contact angles, the latter dropping from 91 to 43 as DS was raised from 0 to 1.0 meq SO 3 -* g-1. This work demonstrates that homogeneous synthesis of SPES is an efficient way to prepare SPES membranes with tightly controlled DS and enhanced hydrophilic properties, in particular, an excellent hydrophilic SWCA even at very low amounts of sulfonic moieties.
  1. Bai P, Cao X, Zhang Y, Yin Z, Wei Q, Zhao C, J. Biomater. Sci.-Polym. Ed., 21, 12 (2010)
  2. Kang MS, Choi YJ, Yoon TH, Moon SH, J. Membr. Sci., 216, 1 (2003)
  3. Koh M, Clark MM, Howe KJ, J. Membr. Sci., 256, 1 (2005)
  4. Iojoiu C, Marechal M, Chabert F, Sanchez JY, Fuel Cells, 5, 3 (2005)
  5. Zhao W, He C, Wang H, Su B, Sun S, Zhao C, Ind. Eng. Chem. Res., 50, 6 (2011)
  6. Liu B, Hu W, Robertson GP, Guiver MD, J. Mater. Chem., 18, 39 (2008)
  7. Ran F, Nie S, Li J, Su B, Sun S, Zhao C, Macromol. Biosci., 12, 1 (2012)
  8. Higashibara T, Matsumoto K, Ueda M, Polymer, 50, 23 (2009)
  9. Giordano S, Longhi M, Formaro L, Farina H, Di Silvestro G, J. Electrochem. Sci. Eng., 3, 3 (2013)
  10. Gohil GS, Nagarale RK, Binsu VV, Shahi VK, J. Colloid Interface Sci., 298, 2 (2006)
  11. Balster J, Krupenko O, Punt I, Stamatialis DF, Wessling M, J. Membr. Sci., 263, 1 (2005)
  12. Al-Omran A, Rose JB, Polymer, 37, 9 (1996)
  13. Jutemar EP, Jannasch P, J. Membr. Sci., 351, 1 (2010)
  14. Nolte R, Ledjeff K, Bauer M, Mulhaupt R, J. Membr. Sci., 83, 2 (1993)
  15. Kim IC, Choi JG, Tak TM, J. Appl. Polym. Sci., 74, 8 (1999)
  16. Byun IS, Kim IC, Seo JW, J. Appl. Polym. Sci., 76, 6 (2000)
  17. Harrison WL, Wang F, Mecham JB, Bhanu VA, Hill M, Kim YS, McGrath JE, J. Polym. Sci. A: Polym. Chem., 41, 14 (2003)
  18. Higashihara T, Matsumoto K, Ueda M, Polymer, 50, 23 (2009)
  19. Lawrence J, Yamaguchi T, J. Membr. Sci., 325, 2 (2008)
  20. Bikson B, Coplan MJ, Gotz G, U.S. Patent 4,508,852 (1985).
  21. Sluma H, Huff D, U.S. Patent 5,013,765 (1991).
  22. Yi Z, Zhu L, Cheng L, Zhu B, Xu Y, Polymer, 53, 2 (2012)
  23. Wang LR, Qin H, Nie SQ, Sun SD, Ran F, Zhao CS, Acta Biomater., 9, 1 (2013)
  24. Soliveri G, Sabatini V, Farina H, Ortenzi MA, Meroni D, Colombo A, Colloids Surf. A: Physicochem. Eng. Asp., 483, 1 (2015)
  25. Zaidi SJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S, J. Membr. Sci., 173, 1 (2000)
  26. Johnson BC, Yilgor I, Tran C, Iqbal M, Wightman JP, Lloyd DR, McGrath JE, J. Polym. Sci. A: Polym. Chem., 22, 3 (1984)
  27. Chikh L, Delhorbe V, Fichet O, J. Membr. Sci., 368(1-2), 1 (2011)
  28. Wang M, Wu LG, Mo JX, Gao CJ, J. Membr. Sci., 274, 1 (2006)
  29. Liu F, Meng X, Zhang Y, Ren L, Nawaz F, Xiao FS, J. Catal., 271, 1 (2010)
  30. Jensen NG, Mashl RJ, Bruinsma RF, Gelbart WM, Phys. Rev. Lett., 78, 12 (1997)
  31. Browne C, Tabor RF, Grieser F, Dagastine RR, J. Colloid Interface Sci., 449, 1 (2015)
  32. Zhao M, Zhou J, Su C, Niu L, Liang D, Li B, J. Phys. Chem., 142, 20 (2015)
  33. Li Y, Wang F, Yang J, Liu D, Roy A, Case S, Lesko J, McGrath J, Polymer, 47, 11 (2006)
  34. Visakh PM, in Polyelectrolyte: Thermodynamics and Rheology, Springer International Publishing, 2014, Vol. 1, pp 1-17.
  35. Kumar M, Ulbricht M, Sep. Purif. Technol., 127, 1 (2014)
  36. Lu D, Zou H, Guan R, Dai H, Lu L, Polym. Bull., 54, 1 (2005)
  37. Harrison WL, Hickner MA, Kim YS, McGrath JE, Fuel Cells, 5, 2 (2005)
  38. Yeo JK, Sperling LH, Thomas DA, Polym. Eng. Sci., 21, 11 (1981)
  39. Wiles KB, Wang F, McGrath JE, J. Polym. Sci. A: Polym. Chem., 43, 14 (2005)
  40. Zhao W, Mou Q, Zhang X, Shi J, Sun S, Zhao C, Eur. Polym. J., 49, 3 (2013)