화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.5, 736-743, September, 2016
신축성 형광 폴리다이페닐아세틸렌 유도체의 합성과 물성
Synthesis and Properties of Stretchable Fluorescent Polydiphenylacetylene Derivatives
E-mail:
초록
본 연구에서는 단량체로 diphenylacetylene 유도체(DPAmC18)를, 가교제로 2관능성 1,4-bis[phenylethynyl]benzene(PEB)를 사용하여, 신축성을 가지는 형광 공액고분자를 합성하였고 물성을 평가하였다. FTIR 분석을 통해 생성고분자들의 구성비를 확인하였으며, XRD, DSC, 자외가시흡광 및 형광방출 스펙트럼 분석을 통해 열역학적/구조적/광학적 특성을 비교 평가하였다. 고분자 내 PEB 함유량의 증가에 따라 단일중합체인 PDPAmC18의 열역학적, 구조적 특성이 점차적으로 변한 반면, 형광특성의 변화는 거의 없었다. 상온에서 UTM을 이용한 기계적 물성을 측정한 결과, PEB의 함유량이 10%인 중합체는 70%~100%의 인장변형 범위에서 가장 가역적인 신축성을 보임과 동시에 가역적인 형광 및 편광형광 변화를 나타내었다. 이 결과는 이들 고분자의 형광장력센서로서의 응용가능성을 시사한다.
Stretchable fluorescent conjugated polymers were synthesized by copolymerization of diphenylacetylene derivative (DPAmC18) and di-functional 1,4-bis[phenylethynyl]benzene (PEB) using as a monomer and a cross-linker, respectively, in different feed ratios and their properties were investigated. The compositional ratios of the polymers were confirmed by FTIR spectroscopy and their thermodynamic/structural/optical properties were evaluated and compared by XRD, DSC, UV-vis absorption and fluorescence (FL) emission spectroscopic analyses. The thermodynamic/structural feature of the homopolymer, PDPAmC18, varied gradually according to the amount of PEB in the polymers while the FL emission was almost not changed. As a result of UTM measurement at room temperature, the polymer having a 10% feed ratio of PEB showed the most reversible stretchability in a tensile strain range from 70% to 100% and, simultaneously, the FL and polarized FL emission were changed reversibly. These results suggest a potential application of our polymers using as a FL tension sensor.
  1. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM, Nature, 393(6681), 146 (1998)
  2. Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA, Science, 320, 507 (2008)
  3. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B, Nat. Mater., 8(8), 621 (2009)
  4. Perriman AW, Brogan APS, Colfen H, Tsoureas N, Owen GR, Mann S, Nat. Chem., 2, 622 (2010)
  5. Babu SS, Aimi J, Ozawa H, Shirahata N, Saeki A, Seki S, Ajayaghosh A, Mohwald H, Nakanishi T, Angew. Chem.-Int. Edit., 51, 3391 (2012)
  6. Babu SS, Hollamby MJ, Aimi J, Ozawa H, Saeki A, Seki S, Kobayashi K, Hagiwara K, Yoshizawa M, Mohwald H, Nakanishi T, Nat. Commun., 4, 1969 (2013)
  7. Amrutha SR, Jayakannan M, J. Phys. Chem. B, 110(9), 4083 (2006)
  8. Bartocci G, Spalletti A, Becker RS, Elisei F, Floridi S, Mazzucato U, J. Am. Chem. Soc., 121(5), 1065 (1999)
  9. Arnrutha SR, Jayakannan M, J. Phys. Chem. B, 112(4), 1119 (2008)
  10. Kwak G, Minaguchi M, Sakaguchi T, Masuda T, Fujiki M, Chem. Mater., 19, 3654 (2007)
  11. Kwak G, Minakuchi M, Sakaguchi T, Masuda T, Fujiki M, Macromolecules, 41(7), 2743 (2008)
  12. Lee WE, Kim JW, Oh CJ, Sakaguchi T, Fujiki M, Kwak G, Angew. Chem.-Int. Edit., 49, 1406 (2010)
  13. Jin YJ, Bae JE, Cho KS, Lee WE, Hwang DY, Kwak G, Adv. Funct. Mater., 24(13), 1928 (2014)
  14. Ou DL, Seddon AB, J. Non-Cryst. Solids, 210, 187 (1997)
  15. Gagos M, Kaminski D, Arczewska M, Krajnik B, Mackowski S, J. Phys. Chem. B, 116(42), 12706 (2012)
  16. Kolesnikov SI, Syunyaev ZI, Zhur. Prikl. Khim.(Leningrad), 58, 2267 (1985)
  17. Zhao KQ, Chen C, Monobe H, Hu P, Wang BQ, Shimizu Y, Chem. Commun., 47, 6290 (2011)
  18. Lee WE, Oh CJ, Park GT, Kim JW, Choi HJ, Sakaguchi T, Fujiki M, Nakao A, Shinohara K, Kwak G, Chem. Commun., 46, 6491 (2010)
  19. Ohira A, Swager TM, Macromolecules, 40(1), 19 (2007)
  20. Kawatsuki N, Tachibana T, An MX, Kato K, Macromolecules, 38(9), 3903 (2005)