Polymer(Korea), Vol.40, No.5, 736-743, September, 2016
신축성 형광 폴리다이페닐아세틸렌 유도체의 합성과 물성
Synthesis and Properties of Stretchable Fluorescent Polydiphenylacetylene Derivatives
E-mail:
초록
본 연구에서는 단량체로 diphenylacetylene 유도체(DPAmC18)를, 가교제로 2관능성 1,4-bis[phenylethynyl]benzene(PEB)를 사용하여, 신축성을 가지는 형광 공액고분자를 합성하였고 물성을 평가하였다. FTIR 분석을 통해 생성고분자들의 구성비를 확인하였으며, XRD, DSC, 자외가시흡광 및 형광방출 스펙트럼 분석을 통해 열역학적/구조적/광학적 특성을 비교 평가하였다. 고분자 내 PEB 함유량의 증가에 따라 단일중합체인 PDPAmC18의 열역학적, 구조적 특성이 점차적으로 변한 반면, 형광특성의 변화는 거의 없었다. 상온에서 UTM을 이용한 기계적 물성을 측정한 결과, PEB의 함유량이 10%인 중합체는 70%~100%의 인장변형 범위에서 가장 가역적인 신축성을 보임과 동시에 가역적인 형광 및 편광형광 변화를 나타내었다. 이 결과는 이들 고분자의 형광장력센서로서의 응용가능성을 시사한다.
Stretchable fluorescent conjugated polymers were synthesized by copolymerization of diphenylacetylene derivative (DPAmC18) and di-functional 1,4-bis[phenylethynyl]benzene (PEB) using as a monomer and a cross-linker, respectively, in different feed ratios and their properties were investigated. The compositional ratios of the polymers were confirmed by FTIR spectroscopy and their thermodynamic/structural/optical properties were evaluated and compared by XRD, DSC, UV-vis absorption and fluorescence (FL) emission spectroscopic analyses. The thermodynamic/structural feature of the homopolymer, PDPAmC18, varied gradually according to the amount of PEB in the polymers while the FL emission was almost not changed. As a result of UTM measurement at room temperature, the polymer having a 10% feed ratio of PEB showed the most reversible stretchability in a tensile strain range from 70% to 100% and, simultaneously, the FL and polarized FL emission were changed reversibly. These results suggest a potential application of our polymers using as a FL tension sensor.
- Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM, Nature, 393(6681), 146 (1998)
- Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA, Science, 320, 507 (2008)
- Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B, Nat. Mater., 8(8), 621 (2009)
- Perriman AW, Brogan APS, Colfen H, Tsoureas N, Owen GR, Mann S, Nat. Chem., 2, 622 (2010)
- Babu SS, Aimi J, Ozawa H, Shirahata N, Saeki A, Seki S, Ajayaghosh A, Mohwald H, Nakanishi T, Angew. Chem.-Int. Edit., 51, 3391 (2012)
- Babu SS, Hollamby MJ, Aimi J, Ozawa H, Saeki A, Seki S, Kobayashi K, Hagiwara K, Yoshizawa M, Mohwald H, Nakanishi T, Nat. Commun., 4, 1969 (2013)
- Amrutha SR, Jayakannan M, J. Phys. Chem. B, 110(9), 4083 (2006)
- Bartocci G, Spalletti A, Becker RS, Elisei F, Floridi S, Mazzucato U, J. Am. Chem. Soc., 121(5), 1065 (1999)
- Arnrutha SR, Jayakannan M, J. Phys. Chem. B, 112(4), 1119 (2008)
- Kwak G, Minaguchi M, Sakaguchi T, Masuda T, Fujiki M, Chem. Mater., 19, 3654 (2007)
- Kwak G, Minakuchi M, Sakaguchi T, Masuda T, Fujiki M, Macromolecules, 41(7), 2743 (2008)
- Lee WE, Kim JW, Oh CJ, Sakaguchi T, Fujiki M, Kwak G, Angew. Chem.-Int. Edit., 49, 1406 (2010)
- Jin YJ, Bae JE, Cho KS, Lee WE, Hwang DY, Kwak G, Adv. Funct. Mater., 24(13), 1928 (2014)
- Ou DL, Seddon AB, J. Non-Cryst. Solids, 210, 187 (1997)
- Gagos M, Kaminski D, Arczewska M, Krajnik B, Mackowski S, J. Phys. Chem. B, 116(42), 12706 (2012)
- Kolesnikov SI, Syunyaev ZI, Zhur. Prikl. Khim.(Leningrad), 58, 2267 (1985)
- Zhao KQ, Chen C, Monobe H, Hu P, Wang BQ, Shimizu Y, Chem. Commun., 47, 6290 (2011)
- Lee WE, Oh CJ, Park GT, Kim JW, Choi HJ, Sakaguchi T, Fujiki M, Nakao A, Shinohara K, Kwak G, Chem. Commun., 46, 6491 (2010)
- Ohira A, Swager TM, Macromolecules, 40(1), 19 (2007)
- Kawatsuki N, Tachibana T, An MX, Kato K, Macromolecules, 38(9), 3903 (2005)