화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.8, 412-416, August, 2016
Contact Area-Dependent Electron Transport in Au/n-type Ge Schottky Junction
E-mail:
The electrical properties of Au/n-type Ge Schottky contacts with different contact areas were investigated using current-voltage (I-V) measurements. Analyses of the reverse bias current characteristics showed that the Poole-Frenkel effect became strong with decreasing contact area. The contribution of the perimeter current density to the total current density was found to increase with increasing reverse bias voltage. Fitting of the forward bias I-V characteristics by considering various transport models revealed that the tunneling current is dominant in the low forward bias region. The contributions of both the thermionic emission (TE) and the generation-recombination (GR) currents to the total current were similar regardless of the contact area, indicating that these currents mainly flow through the bulk region. In contrast, the contribution of the tunneling current to the total current increased with decreasing contact area. The largest E00 value (related to tunneling probability) for the smallest contact area was associated with higher tunneling effect.
  1. Tanaka N, Hasegawa K, Yasinishi K, Murakami N, Oka T, Appl. Phys. Exp., 8, 071001 (2015)
  2. Bahagwat V, Xiao Y, Bhat I, Dutta R, Refaat T, Abedin M, Kumar V, J. Electron. Mater., 35, 1613 (2006)
  3. Garcia-Belmonte G, Montero JM, Ayyad-Limonge Y, Barea EM, Bisquert J, Bolink HJ, Curr. Appl. Phys., 9(2), 414 (2009)
  4. Willis A, Solid-State Electron., 33, 531 (1990)
  5. Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E, Appl. Phys. Lett., 89, 252110 (2006)
  6. Nishimura T, Kita K, Toriumi A, Appl. Phys. Lett., 91, 123123 (2007)
  7. Zhou Y, Ogawa M, Han X, Wang K, Appl. Phys. Lett., 93, 202105 (2008)
  8. Thathachary A, Bhat K, Bhat N, Hegde M, Appl. Phys. Lett., 96, 152108 (2010)
  9. Wu J, Wu Y, Hou C, Wu M, Lin C, Chen L, Appl. Phys. Lett., 99, 253504 (2011)
  10. Kishore V, Paramahans P, Sadana S, Ganguly U, Lodha S, Appl. Phys. Lett., 100, 142107 (2007)
  11. Suzuki A, Asaba S, Yokoi J, Kato K, Kurosawa M, Sakashita M, Taoka N, Nakatsuka O, Zaima S, Jpn. J. Appl. Phys., 53, 04EA06 (2014)
  12. Sioomns J, J. Phys. D-Appl. Phys., 4, 613 (1971)
  13. Zhang H, Miller E, Yu E, J. Appl. Phys., 99, 023703 (2006)
  14. Carpenter M, Melloch M, Lundstrom M, Tobin S, Appl. Phys. Lett., 52, 2157 (1988)
  15. Sze S, Physics of Semiconductor Devices (Wiley, New York, 1981).
  16. Suzue K, Mohammad S, Fan Z, Kim W, Aktas O, Botchkarev A, Morkoc H, J. Appl. Phys., 80, 4467 (1996)
  17. Kim H, Jung CY, Kim SH, Cho Y, Kim DW, Curr. Appl. Phys., 16(1), 37 (2016)
  18. Yu A, Solid-State Electron., 13, 239 (1970)