Korea-Australia Rheology Journal, Vol.28, No.3, 229-236, August, 2016
Theoretical and numerical studies of die swell flow
E-mail:
This paper focuses on the theoretical and numerical predictions of die-swell flow for viscoelastic and viscoelastoplastic fluids. The theoretical results on die swell have been obtained by Tanner for a wide class of constitutive equations, including Phan-Thien Tanner (PTT), pom-pom, and general network type models. These results are compared with numerical solutions across swelling ratio, pressure drop, state of stress, and dissipation-rate for two fluid models, exponential Phan-Thien Tanner (EPTT) and Papanastasiou-Exponential Phan-Thien Tanner (Pap-EPTT). Numerically, the momentum and continuity flow equations are solved by a semi-implicit time-stepping Taylor-Galerkin/pressure-correction finite element method, whilst the constitutive equation is dealt with by a cell-vertex finite volume (cv/fv) algorithm. This hybrid scheme is performed in a coupled fashion on the nonlinear differential equation system using discrete subcell technology on a triangular tessellation. The hyperbolic aspects of the constitutive equation are addressed discretely through upwind fluctuation distribution techniques.
Keywords:hybrid finite element/volume;viscoplastic;viscoelastoplastic;die-swell;exponential Phan-Thien Tanner model;Papanastasiou model
- Al-Muslimawi A, 2013, Numerical Analysis of Partial Differential Equations for Viscoelastic and Free Surface Flows, Ph D Thesis, University of Swansea.
- Al-Muslimawi A, Tamaddon-Jahromi HR, Webster MF, J. Non-Newton. Fluid Mech., 191, 45 (2013)
- Al-Muslimawi A, Tamaddon-Jahromi HR, Webster MF, Korea-Aust. Rheol. J., 25(4), 197 (2013)
- Al-Muslimawi A, Tamaddon-Jahromi HR, Webster MF, Appl. Rheol., 24, 34188 (2014)
- Belblidia F, Tamaddon-Jahromi HR, Webster MF, Walters K, Rheol. Acta, 50(4), 343 (2011)
- Beverly CR, Tanner RI, J. Rheol., 33, 989 (1989)
- Bush MB, J. Non-Newton. Fluid Mech., 34, 15 (1990)
- Bush MB, Milthorpe JF, Tanner RI, J. Non-Newton. Fluid Mech., 16, 37 (1984)
- Carter RE, Warren RC, J. Rheol., 31, 151 (1987)
- Chang PW, Patten TW, Finlayson BA, Comput. Fluids, 7, 285 (1979)
- Clermont JR, Normandin M, J. Non-Newton. Fluid Mech., 50, 193 (1993)
- Crochet MJ, Keunings R, J. Non-Newton. Fluid Mech., 10, 339 (1982)
- Ganvir V, Lele A, Thaokar R, Gautham BR, J. Non-Newton. Fluid Mech., 156(1-2), 21 (2009)
- Matallah H, Townsend P, Webster MF, J. Non-Newton. Fluid Mech., 75(2-3), 139 (1998)
- Mitsoulis E, Abdali SS, Markatos NC, J. Chem. Eng., 71, 147 (1993)
- Ngamaramvaranggul N, Webster MF, Int. J. Numer. Methods Fluids, 36, 539 (2001)
- Oishi CM, Martins FP, Tome MF, Cuminato JA, Mckee S, J. Non-Newton. Fluid Mech., 166(3-4), 165 (2011)
- Papanastasiou TC, J. Rheol., 31, 385 (1987)
- Sizaire R, Legat V, J. Non-Newton. Fluid Mech., 71(1-2), 89 (1997)
- Szabo P, Rallison JM, Hinch EJ, J. Non-Newton. Fluid Mech., 72(1), 73 (1997)
- Tanner RI, J. Polym. Sci. B: Polym. Phys., 8, 2067 (1970)
- Tanner RI, J. Non-Newton. Fluid Mech., 129(2), 85 (2005)
- Tome MF, Grossi L, Castelo A, Cuminato JA, McKee S, Walters K, J. Non-Newton. Fluid Mech., 141(2-3), 148 (2007)
- Wapperom P, Webster MF, J. Non-Newton. Fluid Mech., 79(2-3), 405 (1998)
- Webster MF, Tamaddon-Jahromi HR, Aboubacar M, Numer. Meth. Part Differ. Equ., 21, 272 (2005)