화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.4, 439-443, August, 2016
망간산화물/기능화된 그래핀 나노복합체에 기반한 고성능 슈퍼커패시터 개발
Development of High-performance Supercapacitors Based on MnO2/Functionalized Graphene Nanocomposites
초록
본 연구에서는 MnO2 나노입자들이 기능화된 그래핀에 증착된 나노복합체를 제조하고 이의 우수한 전기화학적 특성을 순환전압전류법, 정전류 충전-방전법 및 임피던스 분석을 통하여 증명하였다. 환원된 그래핀 산화물의 표면 개질을 위하여 이온성 액체를 도입함으로써, 그래핀 시트들 간의 뭉침현상을 제어하고 MnO2 나노입자들의 성장부위를 제공하였다. 상기 제조된 MnO2/RGO 나노복합체는 전자주사현미경, 투과전자현미경, X선 광전자 분광기, X선 회절기를 사용하여 분석하였다. MnO2/RGO 전극의 전기화학적 특성은 Na2SO4 전해액을 사용하여 3상 전극 시스템 하에서 분석실시하였다. MnO2/RGO 전극은 높은 비정전용량(251 F/g), 고속 충방전(80.5% 용량 유지율) 및 장수명 특성(93.6% 용량 유지율)을 나타내었다.
In this report, MnO2 nanoparticle-deposited functionalized graphene sheets were prepared and their superior electrochemical performances were demonstrated by cyclic voltammetry, galvanostatic charge-discharge, and impedance analysis. Ionic liquids were employed to functionalize the surface of reduced graphene oxides (RGOs), leading to prevention of the aggregation of RGO sheets and abundant growth sites for deposition of MnO2 nanoparticles. As-prepared MnO2/RGO nanocomposites were characterized using scanning electron microscope, transition electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical properties of MnO2/RGO electrode were evaluated using Na2SO4 electrolyte under a three-electrode system. The MnO2/RGO electrode showed a high specific capacitance (251 F/g), a high rate capability (80.5% retention), and long-term stability (93.6% retention).
  1. Yan J, Wang Q, Wei T, Fan Z, Adv. Eng. Mater., 4, 130081 (2014)
  2. Gogotsi Y, Nature, 509(7502), 568 (2014)
  3. Jeong JM, Lee KG, Chang SJ, Kim JW, Han YK, Lee SJ, Choi BG, Nanoscale, 7, 324 (2015)
  4. Sun JK, Um EH, Lee CT, Appl. Chem. Eng., 21(1), 11 (2010)
  5. Oh RG, Hong JE, Yang WG, Ryu KS, Appl. Chem. Eng., 24(5), 489 (2013)
  6. Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, Appl. Chem. Eng., 22(4), 405 (2011)
  7. Yang M, Hong SB, Choi BG, Phys. Chem. Chem. Phys., 17, 29874 (2015)
  8. Zhang S, Pan N, Adv. Eng. Mater., 5, 140140 (2015)
  9. Naoi K, Ishimoto S, Miyamoto JI, Naoi W, Energy Environ. Sci., 5, 9363 (2012)
  10. Acerce M, Voiry D, Chhowalla M, Nat. Nanotechnol., 10(4), 313 (2015)
  11. Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
  12. Zhao X, Sanchez BM, Dobson PJ, Gran PS, Nanoscale, 3, 839 (2011)
  13. Aravindan V, Gnanaraj J, Lee YS, Madhavi S, Chem. Rev., 144, 11619 (2014)
  14. Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y, RSC Adv., 3, 13059 (2013)
  15. Choi BG, Yang M, Hong WH, Choi JW, Huh YS, ACS Nano, 6, 4020 (2012)
  16. Yang M, Lee KG, Lee SJ, Lee SB, Han YK, Choi BG, ACS Appl. Mater. Interfaces, 7, 22364 (2015)
  17. Chen H, Zhou S, Wu L, ACS Appl. Mater. Interfaces, 6, 8621 (2014)
  18. Zhang J, Lee JW, ACS Sustainable Chem. Eng., 2, 735 (2014)
  19. Ye S, Feng J, Wu P, ACS Appl. Mater. Interfaces, 5, 7122 (2013)
  20. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN, Nano Lett., 11, 5165 (2011)
  21. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  22. Choi BG, Park HS, ChemSusChem., 5, 709 (2012)
  23. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang SY, Heo NS, Lee SY, Kong J, Hong WH, ACS Nano, 4, 2910 (2010)
  24. Wei W, Cui X, Chen W, Ivey DG, Chem. Soc. Rev., 40, 1697 (2011)