화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.4, 380-385, August, 2016
나노셀룰로오스가 시멘트복합체의 역학적 특성 및 자기수축 특성에 미치는 영향
Effect of Nanocellulose on the Mechanical and Self-shrinkage Properties of Cement Composites
E-mail:
초록
최근 셀룰로오스 나노피브릴과 셀룰로오스나노크리스탈과 같은 나노셀룰로오스는 관심의 초점이 되고 있다. 나노셀룰로오스의 표면에 있는 수산기는 고분자복합체의 보강재로 사용함에 있어서 적합한 기능을 소유하고 있기 때문이다. 본 연구에서 나노셀룰로오스를 시멘트복합체 제조에 있어서 보강재로서 사용하였다. 나노셀룰로오스는 TEMPO 산화에 의한 전처리과정을 거친 후, 균질화 및 초음파처리에 의해서 제조되었고, 투과전자현미경으로 나노셀룰로오스를 분석한 결과 직경이 10에서 15 nm 범위로 나타났다. 0.5% 나노셀룰로오스가 함유된 시멘트복합체의 압축강도를 기존시멘트복합체와 비교하였으며 특히, 인장강도와 휨강도가 기존 시멘트복합체에 비해서 각각 49.7%와 38.8% 개선되었다. 그리고 나노셀룰로오스가 혼합된 시멘트복합체의 자기수축률은 타설 후 1일 경과 시 18.9%, 28일 경과 시 5.9%의 저감효과가 나타났다.
Nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. Due to the presence of hydroxyl groups on the surface of nanocelluloses, their surfaces are reactive, making them suitable candidates for reinforcing materials for manufacturing polymer composites. In this study, CNF was used as a reinforcing material for manufacturing cement composites. CNF was prepared by TEMPO (2,2,6,6,-tetramethyl piperidine-1-oxyl radical) oxidation procedure combined with extensive homogenization and ultrasonication. Transmission electron microscopy (TEM) analysis of the suspension showed the width of CNF between 10 and 15 nm. The compressive strength of cement composites containing 0.5% CNF was comparable to that of conventional cement composites. On the other hand, the tensile and flexural strength were improved by 49.7% and 38.8%, respectively, compared to those of conventional cement composites. Also, at an ambient condition, the degree of self-shrinkage reduction reached to 18.9% in one day, followed by 5.9% in 28 days after molding.
  1. Leao AL, Rowell R, Tavares N, Application of natural fibers in automotive industry in Brazil-thermoforming process. In: Science and technology of polymers and advanced materials, New York: Plenum Press, 755 (1998).
  2. Saheb DN, Jog JP, Adv. Polym. Technol., 18(4), 351 (1999)
  3. Knothe J, Schloßer T, Natural fiber reinforced plastics in automotive exterior applications, In: Proc of the 3rd international wood and natural fibre composites symposium, Kassel (2000).
  4. Riedel U, Nickel J, Angew. Makromol. Chem., 272, 34 (1999)
  5. Mohanty AK, J. Polym. Environ., 10(1/2), 19 (2002)
  6. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 276(1), 1 (2000)
  7. Malkapuram R, Kumar V, Negi YS, J. Reinf. Plast. Compos., 28, 1169 (2009)
  8. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Compos. Sci. Technol., 67, 1627 (2007)
  9. Saito T, Isogai A, Biomacromolecules, 5(5), 1983 (2004)
  10. Isogai A, Saito T, Fukuzumi H, Nanoscale, 3, 71 (2011)
  11. Park YK, Lee JH, Jeon IK, Kim HW, Yoon KW, J. Korea Inst. Build. Constr., 11(5), 419 (2011)
  12. Roh SK, Cho BY, Park SH, Han GT, Durability Properties of Repair Mortar with using Jute Fiber, Proceedings of Architectural Institute of Korea, 30(1), 265-266 (2010).
  13. Kim YK, A basic study on the practical application of papercrete to secondary products of concrete, MS Thesis, Hanyang university, 37 (2014).
  14. Perez DD, Montanari S, Vignon MR, Biomacromolecules, 4(5), 1417 (2003)
  15. KS L ISO 679 : Methods of Testing Cements, Korean Standards Association, p. 20 (2006).
  16. KS F 2586 Methods of Testing Cements, Korean Standards Association, p. 8 (2010).
  17. Isogai A, Kato Y, Cellulose, 4, 153 (1998)
  18. Isogai T, Yanagisawa M, Isogai A, Cellulose, 16, 117 (2009)
  19. Klemm D, Kramer F, Moritz S, LindstrOm T, Ankerfors M, Gray D, Dorris A, Angew. Chem.-Int. Edit., 50, 5438 (2011)