Langmuir, Vol.32, No.20, 5124-5134, 2016
A Comparative Study of the Influence of Sugars Sucrose, Trehalose, and Maltose on the Hydration and Diffusion of DMPC Lipid Bilayer at Complete Hydration: Investigation of Structural and Spectroscopic Aspect of Lipid-Sugar Interaction
It is well-known that sugars protect membrane structures against fusion and leakage. Here, we have investigated the interaction between different sugars (sucrose, trehalose, and maltose) and phospholipid membrane of 1,2-dimyristoyl-sn-glycero-3-phoshpocholine (DMPC) using dynamic light scattering (DLS), transmission electron microscopy (TEM), and other various spectroscopic techniques. DLS measurement reveals that the addition of sugar molecule results a significant increase of the average diameter of DMPC membrane. We have also noticed that in the presence of different sugars the rotational relaxation and solvation time of coumarin 480 (C480) and coumarin 153 (C153) surrounding DMPC membrane increases, suggesting a marked reduction of the hydration behavior at the surface of phospholipid membrane. In addition, we have also investigated the effect of sugar molecules on the lateral mobility of phospholipids. Interestingly, the relative increase in rotational, solvation and lateral diffusion is more prominent for C480 than that of C153 because of their different location in lipid bilayer. It is because of preferential location of comparatively hydrophilic probe C480 in the interfacial region of the lipid bilayer. Sugars intercalate with the phospholipid headgroup through hydrogen bonding and replace smaller sized water molecules from the membrane surface. Therefore, overall, we have monitored a comparative analysis regarding the interaction of different sugar molecules (sucrose, trehalose, and maltose) with the DMPC membrane through DLS, TEM, solvation dynamics, time-resolved anisotropy, and fluorescence correlation spectroscopy (FCS) measurements to explore the structural and spectroscopic aspect of lipid sugar interaction.