화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.26, 4473-4481, 2016
Solution-Phase Singlet Fission in a Structurally Well-Defined Norbornyl-Bridged Tetracene Dimer
The photophysics of a norbornyl-bridged covalent tetracene (Tc) dimer BT1 and a monomer analogue Tc-e were studied in room-temperature nonpolar solvents. Notably in BT1, a Davydov-split band is observed in UV absorption, heralding interchromophore electronic interactions. Emission spectra indicate an acene-like vibronic progression mirroring the lowest-energy visible absorption. For BT1, this argues against excited-state excimer formation. Evidence of intramolecular singlet fission (SF) comes from a comparison of time-resolved emission decay signals collected for BT1 versus Tc-e in toluene. In BT1, the multiexcitonic (TT)-T-1 state is produced in 70 ns in 6% yield. A ratio of fission versus fusion rate constants provides an experimental measure of the SF reaction free energy at 52 meV in good agreement with previous calculations. The low SF yield corroborates our expectations that orbital symmetry effects on diabatic coupling for SF are important for dimers that cannot rely on more favorable thermodynamics.