화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.25, 4368-4375, 2016
Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation
With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multi component systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated.