화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.232, 55-66, 2016
Convoluted models and high-Weissenberg predictions for micellar thixotropic fluids in contraction-expansion flows
This study is concerned with finite element/volume modelling of contraction-expansion axisymmetric pipe flows for thixotropic and non-thixotropic viscoelastic models. To obtain solutions at high Weissenberg numbers (Wi) under a general differential form Wi tau(del)(p) = 2(1- beta)D- f tau(p), both thixotropic Bautista-Manero micellar and non-thixotropic EPTT f-functionals have been investigated. Here, three key modifications have been implemented: first, that of convoluting EPTT and micellar Bautista-Manero f-functionals, either in a multiplicative (Conv(x)) or additive (Conv(+)) form; second, by adopting f-functionals in absolute form (ABS-f-correction); and third, by imposing pure uniaxial-extension velocity-gradient components at the pure-stretch flow-centreline (VGR-correction). With this combination of strategies, highly non-linear solutions have been obtained to impressively high Wi [=O(5000+)]. This capability permits analysis of industrial applications, typically displaying non-linear features such as thixotropy, yield stress and shear banding. The scope of applications covers enhanced oil-recovery, industrial processing of plastics and foods, as well as in biological and microfluidic flows. The impact of rheological properties across convoluted models (moderate-hardening, shear-thinning) has been observed through steady-state solutions and their excess pressure-drop (epd) production, stress, f-functional field structure, and vortex dynamics. Three phases of vortex-behaviour have been observed with rise in elasticity, along with upstream-downstream Moffatt vortices and plateauing epd-behaviour at high-Wi levels. Moreover, enhancement of positive-definiteness in stress has improved high-Wi solution attenuation. (C) 2016 Elsevier B.V. All rights reserved.