Catalysis Today, Vol.273, 106-111, 2016
Silicone microreactors for the photocatalytic generation of hydrogen
A silicone microreactor with 500 mu m-width microchannels coated with a Au/TiO2 photocatalyst was manufactured and tested for the photocatalytic generation of hydrogen from gaseous water-ethanol mixtures under dynamic conditions. The manufacture of the microreactor included the fabrication of a polylactic acid (PLA) mold with a 3D printer and casting with polydimethylsiloxane (PDMS) prepolymer. After curing, the silicone microreactor was peeled off and the microchannels were coated with a Au/TiO2 photocatalyst prepared by impregnation of preformed Au nanoparticles over TiO2, and sealed with a thin silicone cover. The microreactor was tested at room temperature and atmospheric pressure under different operational conditions (photon irradiance, residence time, photocatalyst loading, and water ethanol ratio). Hydrogen production rates of 5.4 NmL W-1 h(-1) were measured at a residence time of 0.35 s using a H2O:C2H5OH molar ratio of 9:1, a photocatalyst load of 1.2 mg cm(-2) and a UV irradiance (365 nm) of 1.5 mW cm(-2) achieving an apparent quantum efficiency of 9.2%. The photogeneration of hydrogen with commercial bioethanol was also tested. A long-term photocatalytic test of two days revealed a stable hydrogen photoproduction rate. The use of silicone microreactors represents an attractive and customizable solution for conducting photochemical reactions for producing hydrogen at low cost. (C) 2016 Elsevier B.V. All rights reserved.