Applied Surface Science, Vol.382, 41-46, 2016
Organic molecules on silicon surface: A way to tune metal dependent Schottky barrier
Effect of covalently bonded organic molecules on p-type Si surfaces, in controlling the performance of metal-silicon Schottky junctions, is studied. Monolayers of 1-dodecyne were formed on hydrated surfaces of p-type Si ((100) orientation) using weak Lewis acid. The chemical modification results in highly homogeneous surfaces. Gold-Si and Aluminum-Si junctions were prepared, both, on modified and unmodified Si surfaces, and I-V characteristics were studied. The results have been interpreted in terms of energy band diagrams. It is demonstrated that the molecular monolayer of 1-dodecyne is effective in controlling the surface states leading to unpinning of the Fermi level and junction responding to the work function of the metal, as expected from theoretical considerations. The simple method presented provides a unique technique to tune the electrical properties of devices with metal-semiconductor interfaces. (C) 2016 Elsevier B.V. All rights reserved.