Applied Surface Science, Vol.379, 270-276, 2016
Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor
The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium-gallium-zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium-gallium-zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Aluminum nitride;Field-effect transistors;Transparent electronics;Indium-gallium-zinc-oxide