Applied Surface Science, Vol.378, 375-383, 2016
The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing
A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 mu M-1.86 mM with high sensitivity of 144.7 A mM(-1) cm(-2), and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 A mM(-1) cm(-2). When signal to noise (SIN) is 3, the calculated detection limit (LOD) is 0.13 mu M. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Au@C@Pt core-double shell nanocomposite;Electrocatalytic reduction;Hydrogen peroxide;Enzyme-free sensor