Applied Surface Science, Vol.375, 90-100, 2016
Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters
In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si3N4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of beta-Si3N4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si3N4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si3N4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si3N4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si3N4 was performed at different powers using a TEM00 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the accuracy of the predicated results for laser ablation of materials undergoing thermo-chemical reactions. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Silicon nitride ceramic;Thermo-chemical reaction model;First-principles calculations;Laser ablation;Thermodynamic parameters