Applied Energy, Vol.176, 245-257, 2016
A physics-based integer-linear battery modeling paradigm
Optimal steady-state dispatch of a stand-alone hybrid power system determines a fuel-minimizing distribution strategy while meeting a forecasted demand over six months to a year. Corresponding optimization models that integrate hybrid technologies such as batteries, diesel generators, and photovoltaics with system interoperability requirements are often large, nonconvex, nonlinear, mixed integer programming problems that are difficult to solve even using the most state-of-the-art algorithms. The rate-capacity effect of a battery causes capacity to vary nonlinearly with discharge current; omitting this effect simplifies the model, but leads to over-estimation of discharge capabilities. We present a physics-based set of integer-linear constraints to model batteries in a hybrid system for a steady-state dispatch optimization problem that minimizes fuel use. Starting with a nonlinear set of constraints, we empirically derive linearizations and then compare them to a commonly used set of constraints that assumes a constant voltage and neglects rate-capacity. Numerical results demonstrate that assuming a fixed voltage and capacity may lead to over-estimating discharge quantities by up to 16% compared to our overestimations of less than 1%. (C) 2016 Elsevier Ltd. All rights reserved.