Applied Energy, Vol.176, 149-156, 2016
Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells
In order to simplify the system configuration and downsize the volume, a proton exchange membrane fuel cell (PEMFC) needs to be operated in a self-humidified mode without any external humidifiers. However, in self-humidified PEMFCs, relatively low cell performance is a problem to be solved. In our previous study, a gas diffusion layer (GDL) containing double gas diffusion backing layer (GDBL) coated by single micro porous layer (MPL) was introduced and its effect on the cell performance was evaluated. In the present study, the effect of the double GDBL was investigated by measuring high frequency resistance (HFR) and electrochemical impedance spectroscopy (EIS). In the experiments, the HFR value was remarkably reduced, while the diameter of semicircle of EIS was increased. It means that the membrane hydration was improved due to enhanced water retention capability of the GDL despite of interrupted gas diffusion. The result of numerical analysis also showed that the water retention capability of GDL can be improved with proper structure design of double GDBL. Based on the result, optimized design of double GDBL for water retention was obtained numerically. The result of this study provides useful information on the structural design of GDBL for self-humidified PEMFCs. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords:Self-humidified proton exchange membrane fuel cell;Gas diffusion layer;Double gas diffusion backing layer;Water retention;Structural design