Applied Biochemistry and Biotechnology, Vol.179, No.3, 375-382, 2016
Development of an in-House TaqMan Real-Time PCR-Based Method to Detect Residual Host Cell DNA in HBV Vaccine
Biological therapeutic products such as recombinant hepatitis B virus (HBV) vaccine, produced by microbial fermentation in complex media, should be evaluated for host cell DNA contamination in purification steps. Eliminating these contaminations increases the efficacy of the vaccine and decreases its side effects. The objective of the present study is to trace the residual host cell DNA (HCD) in recombinant HBV vaccine by developing a TaqMan Real-Time PCR method which is more sensitive, specific, and reproducible than traditional methods such as Picogreen analysis and Threshold DNA assay. Primers and a probe were designed for the most highly conserved regions of Pichia pastoris genome. To determine the specificity of the assay, in addition to performing a BLAST for the primers and the probe in NCBI nucleotide database, 20 different human genomes and 8 bacterial and viral genomes were used. Moreover, serial dilutions of plasmids, from 10(2) to 10(7) copies/mu L (from 0.00064 to 6.4 pg/mu L), were prepared to find the sensitivity and the limit of detection (LOD) of the assay. Using 28 different genome samples, the specificity of the assay was determined to be 100 %. In addition, the sensitivity and LOD of the method was 0.39 x 10(-5) pg/mu L. Moreover, the reproducibility of the assay based on intra- and inter-assay was 1.03 and 1.06 %, respectively. Considering the suitable specificity and sensitivity, ease of use, relatively low cost, and rapidity of the assay, it can be a reproducible and sensitive method to examine recombinant vaccines for P. pastoris residual DNA.