화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.4, 560-567, August, 2016
Mo를 첨가한 Ni/Al2O3 촉매의 수증기 개질반응에서의 내구성 증진 특성연구
Study on Effects of Ni/Al2O3 Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions
E-mail:
초록
본 연구에서는 Ni/Al2O3 촉매의 수증기 개질반응 및 표면 특성을 조사하였다. 조촉매로써 선정된 Mo를 담지하여 제조한 Ni-Mo계 촉매를 Ni계 촉매와 반응활성 비교결과 효율증진 인자를 확인할 수 있다. H2-TPR 및 XPS 분석을 통하여 효율이 저하되는 특성을 확인하였다. 수증기 개질반응 long run 실험 후 촉매표면에 침적된 carbon의 침적특성 및 결합구조, 기화특성을 확인하기 위하여 O2-TPO 분석을 수행하였다. 본 연구를 통하여 수증기 개질반응에서 Ni과 강한 상호작용으로 결합하여 촉매의 반응활성 저하를 일으키는 graphitic carbon 종 형성을 억제함으로 Ni-Mo계 촉매에서 내구성이 증진됨을 확인할 수 있다.
In this study, we characterized steam reforming reactions and surface of Ni/Al2O3 catalysts. Ni-Mo based catalysts were prepared by loading Mo as the co-catalyst and reaction activities of the Ni-Mo based catalysts were compared with those of Ni-based catalysts. Through the H2-TPR and XPS analysis it was confirmed that this characteristic efficiency. O2-TPO analysis was performed to examine the deposition characteristics, bonding structures and evaporation characteristics of carbon deposited on the surface of catalysts after long run experiments were performed for steam reforming reactions. As the results, it was found that durability was improved in Ni-Mo based catalysts inhibiting formation of graphitic carbon species which reduced reaction activities of the catalysts by strongly interacting with Ni in the steam reforming reaction.
  1. Hohlein B, Boe M, Bogild-Hansen J, Brekerhoff P, Colsman G, Emonts B, Menzer R, Riedel E, J. Power Sources, 61, 143 (1996)
  2. Jung SJ, Asan Foundation Research Series, 299, 517 (2010)
  3. Chen D, Lodeng R, Svendsen H, Holmen A, Ind. Eng. Chem. Res., 50(5), 2600 (2011)
  4. Zhai XL, Cheng YH, Zhang ZT, Jin Y, Cheng Y, Int. J. Hydrog. Energy, 36(12), 7105 (2011)
  5. Rostrup-Nielsen JR, Catal. Today, 63(2-4), 159 (2000)
  6. Liu CJ, Ye JY, Jiang JJ, Pan YX, Chem. Cat. Chem., 3, 529 (2011)
  7. Kim DH, Lee TJ, Korean Chem. Eng. Res., 29, 396 (1991)
  8. Kimura T, Miyazawa T, Nishikawa J, Kado S, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K, Appl. Catal. B: Environ., 68(3-4), 160 (2006)
  9. Coll R, Salvado J, Farriol X, Montane D, Fuel Process. Technol., 74(1), 19 (2001)
  10. Wu C, Williams PT, Biofuels, 2, 451 (2011)
  11. Jo YB, “The Study of Carbon Deposit on Nickel Catalyst for the Carbon Dioxide Reforming of Methane,” Ph.D. Dissertation, Department of chemical engineering, Chonnam national university, Gwang-Ju, Korea(2001).
  12. Rostrup-Nielsen JR, Catalysis, 5, 1 (1984)
  13. Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT, Catal. Today, 13, 417 (1992)
  14. Trimm DL, Catal. Rev.-Sci. Eng., 16, 155 (1977)
  15. Hofer LJE, Sterling E, McCartney JT, J. Phys. Chem., 59, 1153 (1955)
  16. Jens RN, David LT, J. Catal., 48, 155 (1977)
  17. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, Korean Chem. Eng. Res., 35, 890 (1997)
  18. Rostrup-Nielsen JR, “Catalysis, Science and Technology,” Springer-Verlag, 5, 1-118(1984).
  19. Choudhary VR, Rajput AM, Mamman AS, J. Catal., 178(2), 576 (1998)
  20. Cheng ZX, Wu QL, Li JL, Zhu QM, Catal. Today, 30(1-3), 147 (1996)
  21. Claridge JB, York APE, Brungs AJ, Marquez-Alvarez C, Sloan J, Tsang SC, Green MLH, J. Catal., 180(1), 85 (1998)
  22. Wan H, Li X, Ji S, Huang B, Wang,K, Li C, J. Nat. Chem., 16, 139 (2007)
  23. Maluf SS, Assaf EM, Fuel, 88(9), 1547 (2009)
  24. Numaguchi T, Eida H, Shoji K, Int. J. Hydrog. Energy, 22(12), 1111 (1997)
  25. Hu CW, Yao J, Yang HQ, Chen Y, Tian AM, J. Catal., 166(1), 1 (1997)
  26. Borowiecki T, Gac W, Denis A, Appl. Catal. A: Gen., 270(1-2), 27 (2004)
  27. Schouten FC, Kaleveld EW, Bootsma GA, Surf. Sci., 63, 460 (1977)
  28. Alstrup I, J. Catal., 109, 241 (1988)
  29. Rudnitskii LA, Solboleva TN, Alekseev AM, React. Kinet. Catal. Lett., 26, 149 (1984)