화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.4, 600-606, July, 2016
가교된 히알루론산 구슬로 제조한 피부용 필러의 점탄성 특성
Viscoelasticity of Hyaluronic Acid Dermal Fillers Prepared by Crosslinked HA Microspheres
E-mail:
초록
디비닐 설폰 가교제로 가교한 히알루론산(HA) 구슬과 비가교된 HA의 부피비가 65/35~95/5로 다른 피부용 HA 필러를 제조하여 가교된 HA 구슬이 필러의 탄성계수와 입자감에 대한 효과를 조사하였다. 구슬 내 2~4±0.5 μm 내부기공을 가진 HA 구슬의 평균 입도는 60~100±4 μm이었다. HA 필러의 가교된 젤 입자 크기는 300±30 μm이었다. 가교된 HA 미세구슬의 부피비가 65에서 95%로 증가함에 따라 필러의 탄성계수는 211에서 700 Pa로 증가하였다. 29~30 게이지 주사바늘을 통과할 수 있는 175~420 Pa 탄성계수를 가진 필러의 가교된 구슬의 부피함량은 65~85%이었다. 실험결과, 모든 필러들은 가교된 HA 구슬의 부피비가 증가할수록 젤 입자 밀도 증가로 인하여 입자감도 증가하였다. 본 연구에서 injectability와 입자감이 우수한 피부용 필러를 성공적으로 제조하였다.
Hyaluronic acid (HA) dermal fillers having different ratios (65/35~95/5) of crosslinked HA microspheres (CHMs) to pure HAs (PHs) are synthesized to investigate the effect of CHMs on the variation of elastic modulus (G') and particle texturing feel (PTF). The diameter of CHMs is in the range of 60 to 100±4 μm with a 3-D porous structure channeled with 2 to 4±0.5 μm pores. The fillers consist of gel particles of 300±30 μm size. G' increased from 211 to 700 Pa with raising the volume fraction of CHM from 65% to 95%. The fillers having the ratios of 65% to 85% exhibit the G' values in the range of 175 Pa to 430 Pa, which can be extruded through the 29~30-gage needle. Experimental results reveal that PTF rises with increasing the volume fraction of CHM due to high density of gel particles. Excellent gel injectability and PTF are successfully achieved.
  1. Schante CE, Zuber G, Herlin C, Vandamme TF, Carbohydr. Polym., 85, 469 (2011)
  2. Gatta AL, Schiraldi C, Papa A, Rosa MD, Polym. Degrad. Stabil., 96, 630 (2011)
  3. Park KY, Kim HK, Kim BJ, J. Eur. Acad. Dermatol. Venereol., 28, 565 (2014)
  4. Flynn TC, Sarazin D, Bezzola A, Terrani C, Micheels P, Dermatol. Surg., 37, 637 (2011)
  5. Redbord KP, Busso M, Hanke CW, Dermatol. Therapy, 24, 71 (2011)
  6. Edsman K, Nord LI, Ohrlund A, Larkner H, Kenne AH, Dermatol. Surg., 38, 1170 (2012)
  7. Kablik J, Monheit GD, Yu L, Chang G, Gershkovich J, Dermatol. Surg., 35, 302 (2009)
  8. Boulle KD, Glogau R, Kono T, Nathan M, Tezel A, Roca-Martinez J, Paliwal S, Stroumpoulis D, Dermatol. Surg., 39, 1758 (2013)
  9. Fakhari A, Phan Q, Thakkar SV, Middaugh CR, Berkland C, Langmuir, 29(17), 5123 (2013)
  10. Hu Z, Xia X, Tang L, US Patent 0040892 A1 (2006).
  11. Fakhari A, Phan Q, Berkland C, J. Biomed. Mater. Res. Part B: Appl. Biomater., 102B, 612 (2014)
  12. Lee DY, Cheon C, Son S, Kim YZ, Kim JT, Jang JW, Kim SS, Polym. Korea, 39(6), 976 (2015)
  13. Kim Y, Lee I, Kim J, Park J, Lee DY, J. Korean Ceram. Soc., 49, 518 (2012)
  14. Kim J, Lee DY, Kim T, Lee M, Cho N, Met. Mater. Intl., 20, 555 (2014)
  15. Kim J, Choi J, Lee DY, Natural Sci., 2, 764 (2010)
  16. Kim J, Lee DY, Kim E, Jang J, Cho N, Tissue Eng. Regen. Med., 11, 32 (2014)
  17. Kim J, Lee DY, Jang J, Kim T, Jang Y, J. Biomed. Eng. Res., 34, 117 (2013)
  18. Kim J, Lee DY, Oh YS, Bang JW, Hyun C, Kim T, Choi JH, Biomater. Res., 17, 37 (2013)
  19. Kim J, Lee DY, Kim Y, Lee I, Song Y, J. Sensor Sci. Technol., 21, 256 (2012)
  20. Kim J, Lee DY, Choi JH, Biomater. Res., 15, 125 (2011)
  21. Kim J, Lee DY, Choi JH, Biomater. Res., 14, 25 (2010)
  22. Kim Y, Lee I, Kim J, Park J, Lee DY, J. Korean Ceram. Soc., 49, 518 (2012)
  23. Choi C, Park JK, Kim WS, Jang MK, Nah JW, Polym. Korea, 35(2), 119 (2011)
  24. Allemann I, Baumann L, Clin. Interv. Aging, 3, 629 (2008)
  25. Sundram H, Voigts B, Beer K, Meland M, Dermatol. Surg., 36, 1859 (2010)