화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.5, 235-240, May, 2016
시차주사열량측정법에 의한 니켈기 초내열 합금의 열분석
Thermal Analysis of Nickel-Base Superalloys by Differential Scanning Calorimetry
E-mail:
Appropriate thermo-mechanical properties of nickel-based superalloys are achieved by heat treatment, which induces precipitation and solid solution hardening; thus, information on the temperature ranges of precipitation and dissolution of the precipitates is essential for the determination of the heat treatment condition. In this study, thermal analyses of nickelbased superalloys were performed by differential scanning calorimetry method under conditions of various heating rates of 5, 10, 20, or 40K/min in a temperature range of 298~1573K. Precipitation and dissolution temperatures were determined by measuring peak temperatures, constructing trend lines, and extrapolating those lines to the zero heating rate to find the exact temperature under isothermal condition. Determined temperatures for the precipitation reactions were 813, 952, and 1062K. Determined onset, peak, and offset temperatures of the first dissolution reaction were 1302, 1388, and 1406K, respectively, and those values of the second dissolution reaction were 1405, 1414, and 1462K. Determined solvus temperature was 1462K. The study showed that it was possible to use a simple method to obtain accurate phase transition temperatures under isothermal condition.
  1. Jang JM, KISTI Market Report, 2, 16 (2012)
  2. Furrer D, Fecht H, J. Metals, 51, 14 (1991)
  3. Madeleine DC, The Microstructure of Superalloys, p.48, CRC Press, London (1997).
  4. Kim SE, Cho CC, Hur BY, Na YS, Park NK, Anal. Sci. Technol., 12, 235 (1999)
  5. Smith, Metallic Materials, revised edition, p.505-523, translated by Han BH, Kyobo Book Centre, Seoul, Korea (2012).
  6. Donachie MJ, Donachie SJ, Superalloys: A Technical Guide Second Edition, p.26-28, ASM International, Materials Park, USA (2002).
  7. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L, Binary Alloy Phase Diagrams Second Edition, p.2865-2874, ASM International, Materials Park, USA (2007).
  8. Chapman LA, J. Mater. Sci., 39(24), 7229 (2004)
  9. Reed RC, The Superalloys Fundamentals and Applications, p.1-14, Cambridge University Press, New York (2006).
  10. Watson JE, Superalloys: Production, Properties and Applications, p.25-29, NOVA Science Publishers, New York (2011).
  11. Davis JR, Nickel, Cobalt, and Their Alloys p.7-17, ed. J. R. Davis, ASM International, Materials Park, USA (2000).
  12. Toda A, Taguchi K, Nozaki K, Konishi M, Polymer, 55(14), 3186 (2014)
  13. Toda A, Konishi M, Thermochim. Acta, 589, 262 (2014)
  14. Pope MI, Judd MD, Differential Thermal Analysis, Ch.6, Heyden & Son Ltd, London (1977).
  15. Dobrovska J, Zia S, Kavicka F, Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, 101 (2012).