화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.65, No.1, 75-91, 1996
An adaptive viscoelastic stress splitting scheme and its applications: AVSS/SI and AVSS/SUPG
We report an adaptive viscoelastic stress splitting (AVSS) scheme, which was found to be extremely robust in the numerical simulation of viscoelastic flow involving steep stress boundary layers. The scheme is different from the elastic viscous split stress (EVSS) in that the local Newtonian component is allowed to depend adaptively on the magnitude of the local elastic stress. Two decoupled versions of the scheme were implemented for the Upper Convected Maxwell (UCM) model: the streamline integration (AVSS/SI), and the streamline upwind Petrov-Galerkin (AVSS/SUPG) methods of integrating the stress. The implementations were benchmarked against the known analytic Poiseuille solution, and no upper limiting Weissenberg number was found (the computation was stopped at Weissenberg number of O(10(4))). The flow past a sphere in a tube was solved next, giving convergent results up to a Weissenberg number of 3.2 with the AVSS/SI and 1.55 with the AVSS/SUPG (both were decoupled schemes; without the adaptive scheme, the limiting Weissenberg number for the decoupled streamline integration method was about 0.3). These results show that the decoupled AVSS is more stable than the corresponding EVSS, and the SI is more robust than SUPG in solving the constitutive equation of hyperbolic type. In addition, we found a very long stress wake behind the sphere, and a weak vortex in the rear stagnation region at a Weissenberg number above W-i of about 1.6, which does not seem to increase in size or strength with increasing W-i.