Journal of Power Sources, Vol.317, 25-34, 2016
Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells
The electrode balancing defines the state of charge (SoC) of a lithium-ion cell and is a crucial point considering lifetime and safe operation. The electrode balancing varies during fatigue which results in changes of the individual electrode potentials for fixed (dis-)charge voltages of the full-cell. Therefore the materials are cycled closer or beyond their electrochemical (meta-)stability window. This leads to accelerated degradation reactions or even to safety problems. The origin of the changes in the cell balancing is the limited amount of mobile lithium, which decreases during cycling due to the loss of lithiated active material a), the reduction of accessible lattice sites in the active materials b) and the loss of active lithium outside the electrodes c). In most of the commercial cells a) and b) can be attributed to the cathode, c) occurs due to reactions on the anode surface. Changes in the electrode balancing of three differently fatigued 7 Ah lithium-ion cells are investigated by electrochemical cycling of full- and half-cells, assembled from cell components of the fatigued 7 Ah cells. Based on these results the observed performance drop is assigned to a), b) or c) mentioned above and the capacity losses are quantified. (C) 2016 Elsevier B.V. All rights reserved.