Journal of Chemical Thermodynamics, Vol.100, 22-28, 2016
Thermodynamic models for determination of 3-chloro-N-phenylphthalimide solubility in binary solvent mixtures of (acetone, ethyl acetate or 1,4-dioxane + methanol)
The solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents of (acetone + methanol, ethyl acetate + methanol and 1,4-dioxane + methanol) were determined experimentally by using the isothermal dissolution equilibrium method within the temperature range from (288.15 to 323.15) K under atmosphere pressure. For the binary systems of (acetone + methanol) and (1,4-dioxane + methanol), the solubility of 3-chloro-N-phenylphthalimide increased with increasing temperature and mass fraction of acetone or 1,4-dioxane; and for the (ethyl acetate + methanol) system, at a given composition of ethyl acetate, the solubility of 3-chloro-N-phenylphthalimide increased with an increase in temperature; nevertheless at the same temperature, they increased at first and then decreased with increasing mass fraction of 1,4-dioxane. At the same temperature and mass fraction of acetone, ethyl acetate or 1,4-dioxane, the solubility of 3-chloro-N-phenylphthalimide was greater in (1,4-dioxane + methanol) than in the other two mixed solvents. The solubility values were correlated by employing the Jouyban-Acree model, van't Hoff-Jouyban-Acree model, Apelblat-Jouyban-Acree model, Ma model, and Sun model. On the whole, the Ma model and Sun model were proven to provide good representation of the experimental solubility results. Furthermore, the dissolution enthalpies of the dissolution process were calculated. The dissolution process of 3-chloro-N-phenylphthalimide in these mixed solvents is endothermic. The experimental solubility and the models in this study could be helpful in purifying 3-chloro-N-phenylphthalimide. (C) 2016 Elsevier Ltd. All rights reserved.