화학공학소재연구정보센터
Inorganic Chemistry, Vol.55, No.8, 3980-3991, 2016
SrMnO3 Thermochromic Behavior Governed by Size-Dependent Structural Distortions
The influence of particle size in both the structure and thermochromic behavior of 4H-SrMnO3 related perovskite is described. Microsized SrMnO3 suffers a structural transition from hexagonal (P6(3)/mmc) to orthorhombic (C222(1)) symmetry at temperature close to 340 K. The orthorhombic distortion is due to the tilting of the corner-sharing Mn2O9 units building the 4H structural type. When temperature decreases, the distortion becomes sharper reaching its maximal degree at similar to 125 K. These structural changes promote the modification of the electronic structure of orthorhombic SrMnO3 phase originating the observed color change. nano-SrMnO3 adopts the ideal 4H hexagonal structure at room temperature, the orthorhombic distortion being only detected at temperature below 170 K. A decrease in the orthorhombic distortion degree, compared to that observed in the microsample, may be the reason why a color change is not observed at low temperature (77 K).