화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.3, 305-309, June, 2016
고분자 전해질 연료전지에서 sPEEK 막을 이용한 전극과 막 합체(MEA)의 열화에 관한 연구
Study on the Degradation of MEA Using Sulfonated Poly(ether ether ketone) Membrane in Proton Exchange Membrane Fuel Cells
E-mail:
초록
최근에 저가의 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구개발이 활발히 진행되고 있다. 본 연구에서는 sulfonated Poly (ether ether ketone) (sPEEK) MEA 내구성을 시험하기 위해 열화 가속화 기법을 이용하여 막과 전극이 동시에 열화되는 MEA 열화 실험을 진행하였다. 열화 전과 후에 I-V 분극곡선, 수소투과도, 전극 활성 면적, 막 저항과 부하 전달 저항을 측정하여 열화 전과 후를 비교하였다. sPEEK 막의 수소 투과도는 낮았지만, 저가습 OCV 조건에서 발생하는 라디칼에 Nafion과 같은 불소계막보다 sPEEK 막이 약했다. MEA 열화 실험 결과 144시간 후와 271시간 후 성능이 각각 15%와 65% 감소하였다. 144이후 급격한 성능감소의 주요인은 막에 발생한 핀홀의 Pt/C 입자에 의한 shorting 현상이라고 본다.
Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, to test the durability of sPEEK MEA (Membrane and Electrode Assembly), ADT (Accelerated Degradation Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. Before and after degradation, I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. Although the permeability of hydrogen through sPEEK membrane was low, sPEEK membrane was weaker to radical evolved at low humidity and OCV condition than fluorinated membrane such as Nafion. Performance after MEA degradation for 144 hours and 271 hours were reduced by 15% and 65%, respectively. It was showed that the main cause of rapid decrease of performance after 144 hours was shorting due to Pt/C particles in the pinholes.
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
  2. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
  3. Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA , Lamm A (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
  6. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
  8. Park CH, Lee CH, Guiver MD, Lee YM, Prog. Polym. Sci, 36, 1443 (2011)
  9. Jeong JJ, Shin YC, Lee MS, Lee DH, Na IC, Lee H, Park KP, Korean Chem. Eng. Res., 51(5), 556 (2013)
  10. Gil M, Ji XL, Li XF, Na H, Hampsey JE, Lu YF, J. Membr. Sci., 234(1-2), 75 (2004)
  11. Zhong SL, Liu CG, Dou ZY, Li XF, Zhao CJ, Fu TZ, Na H, J. Membr. Sci., 285(1-2), 404 (2006)
  12. Peixiang X, Gilles P, Michael D, Serguei D, Wang K, Serge K, J. Membr. Sci., 229, 950106 (2004)
  13. Lawrence J, Yamaguchi T, J. Membr. Sci., 325(2), 633 (2008)
  14. Colicchio I, Wen F, Keul H, Simon U, Moeller M, J. Membr. Sci., 326(1), 45 (2009)
  15. Zhao CJ, Li XF, Wang Z, Dou ZY, Zhong SL, Na H, J. Membr. Sci., 280(1-2), 643 (2006)
  16. Paik Y, Chae SA, Han OH, Hwang SY, Ha HY, Polymer, 50(12), 2664 (2009)
  17. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
  18. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)