Biochemical and Biophysical Research Communications, Vol.473, No.2, 593-599, 2016
Enriched environment housing enhances the sensitivity of mouse pancreatic cancer to chemotherapeutic agents
Living in an enriched housing environment is an established model of eustress and has been consistently shown to reduce the growth of transplanted tumors, including pancreatic cancer. Here, we further investigate the influence of an enriched environment (EE) on the efficacy of chemotherapy in pancreatic cancer. Male C57BL/6 mice were housed in EE or standard environment (SE) conditions and transplanted with syngeneic Panc02 pancreatic cancer cells. Tumor-bearing mice were treated with 5-fluorouracil (5-FU) or gemcitabine (GEM) to examine their sensitivities to chemotherapy. The results showed that both 5-FU and GEM exerted the dose dependent inhibition of tumor growth. The tumor inhibition rates of low-dose 5-FU and GEM were improved from 17.7% and 23.6% to 463% and 49.9% by EE housing. Importantly, tumor cells isolated from the pancreatic cancer xenografts of EE mice had significantly enhanced sensitivities to both 5-FU and GEM (IC50 for 5-FU: 2.8 mu M versus 27.3 mu M; IC50 for GEM: 0.8 mu M versus 5.0 mu M). Furthermore, using microarray analyses, we identified the "ATP-binding cassette (ABC) transporter" that was overrepresented among EE-induced down-regulated genes in pancreatic cancer. Particularly, the tumoral expression of ABC transporter A8b (ABCA8b) was confirmed to be significantly decreased by EE. Over-expression of ABCA8b in mouse pancreatic cancer cells led to a marked decrease in the sensitivity to chemotherapeutic drugs both in vitro and in vivo. In conclusion, our data indicate that benign stressful stimulation can synergistically boost the efficiency of chemotherapeutics in pancreatic cancer, which suggests a novel strategy for adjuvant cancer therapy. (C) 2016 Elsevier Inc. All rights reserved.