화학공학소재연구정보센터
Applied Surface Science, Vol.374, 65-70, 2016
Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates
In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au-Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 degrees C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm(-2) - process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au-Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au-Ag catalyst (Au3Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg2) layer resulted in the growth of a dense structure of ZnO nanobelts. (C) 2015 Elsevier B.V. All rights reserved.