화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.4, 216-221, April, 2016
적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구
Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process
E-mail:
A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature (300 ℃) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.
  1. Han HS, Kwak SW, Kim B, Lee TM, Kim SH, Kim I, Korean J. Mater. Res., 22, 9 (2012)
  2. Hebner TR, Wu CC, Marcy D, Lu MH, Sturm JC, Appl. Phys. Lett., 72, 519 (1998)
  3. Kawase T, Moriya S, Newsome CJ, Shimoda T, Jpn. J. Appl. Phys., 44, 3649 (2005)
  4. Kim D, Moon J, Electrochem. Solid State Lett., 8(11), J30 (2005)
  5. Di CA, Yu G, Liu YQ, Guo YL, Wang Y, Wu WP, Zhu DB, Adv. Mater., 20(7), 1286 (2008)
  6. Lee Y, Choi JR, Lee K, Stott NE, Kim D, Nanotechnology, 19, 415604 (2008)
  7. Ryu J, Kim HS, Hahn HT, J. Electron. Mater., 40, 42 (2011)
  8. Wu CJ, Chen SM, Shenga YJ, Tsao HK, J. Taiwan Inst. Chem. Eng., 45, 2719 (2014)
  9. Allen ML, Aronniemi M, Mattila T, Alastalo A, Ojanpera K, Suhonen M, Seppa H, Nanotechnology, 19, 175201 (2008)
  10. Kim HS, Dhage SR, Shim DE, Hahn HT, Appl. Phys. A-Mater. Sci. Process., 97, 791 (2009)
  11. Zenou M, Ermak O, Saar A, Kotler Z, J. Phys. D-Appl. Phys., 47, 025501 (2014)
  12. Yoon SM, Jo J, Kim KY, J. Korean Soc. Precis. Eng., 31, 505 (2014)
  13. Kim NR, Lee JH, Yi SM, Joo YC, J. Electrochem. Soc., 158(8), K165 (2011)