화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.4, 187-193, April, 2016
산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용
Iron Oxide-Carbon Nanotube Composite for NH3 Detection
E-mail:
Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with 500 oC/2 h oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.
  1. Pawar NK, Kajale DD, Patil GE, Wagh VG, Gaikwad VB, Deore MK, Jain GH, Int. J. Smart Sens. Intelligent Syst., 5, 441 (2012)
  2. Mandelis A, Christofides C, Physics, Chemistry and Technology of Solid State Gas Sensor Devices, Wiley-Interscience, New York (1993).
  3. Kim NH, Kim GJ, J. Nanosci. Nanotechnol., 11, 3914 (2007)
  4. Hoa ND, Quy NV, Cho Y, Kim D, Sens. Actuators B-Chem., 135, 656 (2009)
  5. Hoa ND, Van Quy N, Song H, Kang Y, Cho Y, Kim D, J. Cryst. Growth, 311(3), 657 (2009)
  6. Oh DH, Hoa ND, Kim D, J. Nanosci. Nanotechnol., 11, 1601 (2011)
  7. Vuong NM, Kim D, Jung H, Kim H, Hong SK, J. Mater. Chem., 22, 6716 (2012)
  8. Vuong NM, Kim D, Kim H, Sens. Actuators B-Chem., 220, 932 (2015)
  9. Donato N, Latino M, Neri G, Carbon nanotubes-From research to applications, p. 299 Ed. Bianco, In Tech Pub. Astralia, (2011).
  10. Moon S, Vuong NM, Lee D, Kim D, Lee H, Kim D, Hong SK, Yoon SG, Sens. Actuators B-Chem., 222, 166 (2016)
  11. Vuong NM, Kim D, Kim H, Sci. Rep., 5, 11040 (2015)
  12. Jung SH, Oh E, Lee KH, Park W, Jeong SH, Adv. Mater., 19(5), 749 (2007)
  13. Yoon K, Song O, Korean J. Mater. Res., 18(1), 5 (2008)
  14. Miyata Y, Mizuno K, Kataura H, J. Nanomater., 2011, 1 (2011)
  15. Choi GS, Cho YS, Hong SY, Park JB, Son KH, Kim DJ, J. Appl. Phys., 91, 3847 (2002)
  16. Oh D, Kang Y, Jung H, Song H, Cho Y, Kim D, Korean J. Mater. Res., 19(9), 488 (2009)
  17. Zhang X, Li H, Wang S, Fan FF, Bard AJ, J. Phys. Chem. C, 118, 16842 (2014)