Macromolecular Research, Vol.24, No.5, 429-435, May, 2016
Wettability Control on Chitosan-Wrapped Carbon Nanotube Surface Through Simple Octanal-treatment: Selective Removing Phenol from Water
E-mail:
Chitosan-carbon nanotube membrane (Chit-CNTs) and octanal-modified Chit-CNTs (ocChit-CNT) membranes were obtained by chitosan-wrapping of individual carbon nanotube molecules, by self-assembly of chitosan shell-CNT core units, and by surface modification using octanal. Coexistence of diverse nano-pores (with BET pore size of about 2.0-5.3 nm and BET surface area of about 65.3-86.7 m2/g) and micro-pores (with porosity of average 10.9-12.2%) created between three-dimensionally interconnected Chit-CNT units within Chit-CNTs were observable in SEM images of Chit-CNT and ocChit-CNT membranes. As an application, they exhibit high selective affinity for phenol in aqueous medium. The sorption capacity (SC) (weight of phenol picked up by a given weight of sorbent) after draining was about 6 g/g and the sorption efficiency (SE) (weight of phenol picked up by a given weight of sorbent in water system) was >98%. Chit-CNT and ocChit-CNT membranes as a sorbent were reusable after centrifugation or washing with organic solvent such as acetone.
Keywords:chitosan-shell and CNT-core structured membrane;controllable wettability;three dimensionally networked structure;selective phenol sorption
- Xu F, Jin S, Zhong H, Wu D, Yang X, Chen X, Wei H, Fu R, Jiang D, Sci. Rep., 5, 8825 (2015)
- Wang B, Liang W, Guo Z, Liu W, Chem. Soc. Rev., 44, 336 (2015)
- Carson L, Brown CK, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI, Mater. Lett., 63, 617 (2009)
- Seo SJ, Kim JJ, Kim JH, Lee JY, Shin US, Lee EJ, Kim HW, Compos. Sci. Technol., 96, 31 (2014)
- Kennedy LJ, Vijaya JJ, Kayalvizhi K, Sekaran G, Chem. Eng. J., 132(1-3), 279 (2007)
- Calace N, Nardi E, Petronio BM, Pitroletti M, Environ. Pollut., 118, 315 (2002)
- Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2-3), 348 (2010)
- Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58, 1049 (2005)
- Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ, Energy Environ. Sci., 4, 2062 (2011)
- Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA, J. Mol. Liq., 206, 176 (2015)
- Han TT, Xiao YL, Tong MM, Huang HL, Liu DH, Wang LY, Zhong CL, Chem. Eng. J., 275, 134 (2015)
- Lin D, Xing B, Environ. Sci. Technol., 42, 7254 (2008)
- Yang K, Wu W, Jing Q, Zhu L, Environ. Sci. Technol., 42, 7931 (2008)
- Qing Z, Kun Y, Siyu Z, Benny C, Jian Z, Hamid M, Baoshan X, Carbon, 91, 494 (2015)
- Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58, 1049 (2005)
- Kah M, Zhang X, Hofmann T, Sci. Total Environ., 497-498, 133 (2014)
- Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL, Polymers, 2, 522 (2010)
- Custodio CA, Cerqueira MT, Marques AP, Reis RL, Mano JF, Biomaterials, 43, 23 (2015)
- Saraiva SM, Miguel SP, Ribeiro MP, Coutinho P, Correia IJ, RSC Adv., 78, 63478 (2015)
- Przekora A, Ginalska G, Biomed. Mater., 10, 015009 (2015)
- Siddiqui N, Pramanik K, J. Appl. Polym. Sci., 132, 41534 (2015)
- Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G, Biomacromolecules, 15(2), 635 (2014)
- Kim HS, Song MS, Seo JW, Shin US, Synth. Met., 196, 92 (2014)
- Hwang JY, Kim HS, Kim JH, Shin US, Lee SH, Langmuir, 31(28), 7844 (2015)
- Sprung MA, Chem. Rev., 26, 297 (1940)