화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.5, 429-435, May, 2016
Wettability Control on Chitosan-Wrapped Carbon Nanotube Surface Through Simple Octanal-treatment: Selective Removing Phenol from Water
E-mail:
Chitosan-carbon nanotube membrane (Chit-CNTs) and octanal-modified Chit-CNTs (ocChit-CNT) membranes were obtained by chitosan-wrapping of individual carbon nanotube molecules, by self-assembly of chitosan shell-CNT core units, and by surface modification using octanal. Coexistence of diverse nano-pores (with BET pore size of about 2.0-5.3 nm and BET surface area of about 65.3-86.7 m2/g) and micro-pores (with porosity of average 10.9-12.2%) created between three-dimensionally interconnected Chit-CNT units within Chit-CNTs were observable in SEM images of Chit-CNT and ocChit-CNT membranes. As an application, they exhibit high selective affinity for phenol in aqueous medium. The sorption capacity (SC) (weight of phenol picked up by a given weight of sorbent) after draining was about 6 g/g and the sorption efficiency (SE) (weight of phenol picked up by a given weight of sorbent in water system) was >98%. Chit-CNT and ocChit-CNT membranes as a sorbent were reusable after centrifugation or washing with organic solvent such as acetone.
  1. Xu F, Jin S, Zhong H, Wu D, Yang X, Chen X, Wei H, Fu R, Jiang D, Sci. Rep., 5, 8825 (2015)
  2. Wang B, Liang W, Guo Z, Liu W, Chem. Soc. Rev., 44, 336 (2015)
  3. Carson L, Brown CK, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI, Mater. Lett., 63, 617 (2009)
  4. Seo SJ, Kim JJ, Kim JH, Lee JY, Shin US, Lee EJ, Kim HW, Compos. Sci. Technol., 96, 31 (2014)
  5. Kennedy LJ, Vijaya JJ, Kayalvizhi K, Sekaran G, Chem. Eng. J., 132(1-3), 279 (2007)
  6. Calace N, Nardi E, Petronio BM, Pitroletti M, Environ. Pollut., 118, 315 (2002)
  7. Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2-3), 348 (2010)
  8. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58, 1049 (2005)
  9. Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ, Energy Environ. Sci., 4, 2062 (2011)
  10. Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA, J. Mol. Liq., 206, 176 (2015)
  11. Han TT, Xiao YL, Tong MM, Huang HL, Liu DH, Wang LY, Zhong CL, Chem. Eng. J., 275, 134 (2015)
  12. Lin D, Xing B, Environ. Sci. Technol., 42, 7254 (2008)
  13. Yang K, Wu W, Jing Q, Zhu L, Environ. Sci. Technol., 42, 7931 (2008)
  14. Qing Z, Kun Y, Siyu Z, Benny C, Jian Z, Hamid M, Baoshan X, Carbon, 91, 494 (2015)
  15. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58, 1049 (2005)
  16. Kah M, Zhang X, Hofmann T, Sci. Total Environ., 497-498, 133 (2014)
  17. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL, Polymers, 2, 522 (2010)
  18. Custodio CA, Cerqueira MT, Marques AP, Reis RL, Mano JF, Biomaterials, 43, 23 (2015)
  19. Saraiva SM, Miguel SP, Ribeiro MP, Coutinho P, Correia IJ, RSC Adv., 78, 63478 (2015)
  20. Przekora A, Ginalska G, Biomed. Mater., 10, 015009 (2015)
  21. Siddiqui N, Pramanik K, J. Appl. Polym. Sci., 132, 41534 (2015)
  22. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G, Biomacromolecules, 15(2), 635 (2014)
  23. Kim HS, Song MS, Seo JW, Shin US, Synth. Met., 196, 92 (2014)
  24. Hwang JY, Kim HS, Kim JH, Shin US, Lee SH, Langmuir, 31(28), 7844 (2015)
  25. Sprung MA, Chem. Rev., 26, 297 (1940)