Korean Journal of Chemical Engineering, Vol.33, No.6, 1767-1776, June, 2016
Dynamic modeling and simulation of reaction, slag ehavior, and heat transfer to water-cooling wall of shell entrained-flow gasifier
E-mail:
A mathematical model is developed to simulate a pilot Shell entrained-flow coal gasifier. Submodels of specific structures of the gasifier are established to simulate the complicated gasification process. The model includes the total energy conservation equation and mass conservation equations for the gas components, solid flow, and gas flow. It simulates the influence of the gasifier structure and dimensions and can calculate the effects of changing almost every important operation parameter, e.g., the syngas composition, gasification temperature, carbon conversion ratio, walllayer temperature, and slag mass flow rate. The model can predict the syngas composition under a limited residence time condition. Furthermore, it considers the heat transfer coefficient of each layer of the water wall to calculate its heat loss and temperature. Thus, the model also reflects the influence of performance parameters of the gasifier’s water wall. The slag mass flow rate on the wall is calculated using a slag submodel.
Keywords:Entrained-flow Gasifier;Dynamic Modelling;Simulation;Reaction;Water Wall heat Transfer;Slag Behavior
- Seo HK, Park S, Lee J, Kim M, Chung SW, Chung JH, Kim K, Korean J. Chem. Eng., 28(9), 1851 (2011)
- Corman JC, Appl. Energy, 10, 243 (1982)
- Beer JM, Prog. Energy Combust. Sci., 26, 301 (2000)
- Buskies U, Appl. Therm. Eng., 16, 959 (1996)
- Chen X, He MY, Spitsberg I, Fleck NA, Hutchinson JW, Evans AG, Wear, 256, 735 (2004)
- Chen CX, Horio M, Kojima T, Chem. Eng. Sci., 55(18), 3861 (2000)
- Chen CX, Horio M, Kojima T, Chem. Eng. Sci., 55(18), 3875 (2000)
- Sha XZ, Chen YG, Cao JG, Yang YM, Ren DQ, Fuel, 69, 656 (1990)
- Govind R, Shah J, AIChE J., 79, 30 (1984)
- Monaghan RFD, Ghoniem AF, Fuel, 91(1), 61 (2012)
- Sun B, Liu YW, Chen X, Zhou QL, Su M, Fuel Process. Technol., 92(8), 1418 (2011)
- Merrick D, Fuel, 62, 534 (1983)
- Jones WP, Lindstedt RP, Combust. Flame, 73, 233 (1988)
- Westbrook CK, Dryer FL, Combust. Sci. Technol., 27, 31 (1981)
- Chase MW, NIST-JANAF Thermochemical Tables, 4th Ed., National Institute of Standards and Technology, Gaithersburg, MD (1998).
- Wen CY, Chaung TZ, Ind. Eng. Chem. Process Des. Dev., 18(4), 684 (1979)
- Lee BH, Kim SI, Kim SM, Oh DH, Gupta S, Jeon CH, Korean J. Chem. Eng., 33(1), 147 (2016)
- Shannon GN, Rozelle PL, Pisupati SV, Sridhar S, Fuel Process. Technol., 89(12), 1379 (2008)
- Montagnaro F, Salatino P, Combust. Flame, 157(5), 874 (2010)
- Urbain G, Cambier F, Deletter M, Anseau MR, Trans. J. British Ceram. Soc., 80, 139 (1981)
- White FM, Fluid mechanics, 2nd Ed., McGraw-Hill, New York, NY (1986).
- Incropera FP, DeWitt DP, Fundamentals of heat and mass transfer, 5th Ed., Wiley, New York, NY (2002).
- Smoot LD, Brown BW, Fuel, 66, 1249 (1987)
- Gazzani M, Manzolini G, Macchi E, Ghoniem AF, Fuel, 104, 822 (2013)
- De Graaf JD, Shell coal gasification technology, Lecture, Technische Universiteit Eindhoven (2011).
- Higman C, van der Burgt M, Gasification, 2nd Ed., Elsevier Gulf Professional Publishing, Burlington, MA (2008). ISBN: 978-0-7506-8528-3.
- Steiner D, Taborek J, Heat Transfer Eng., 27, 43 (1992)
- Cooperative Research Centre for Coal in Sustainable Development (CCSD), Research Report 80 (December 2007).