화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 288-294, May, 2016
Core-shell morphology of Au-TiO2@graphene oxide nanocomposite exhibiting enhanced hydrogen production from water
E-mail:
The core.shell morphology of graphene oxide (GO) coated Au-TiO2 (Au-TiO2@GO) nanocatalysts has displayed enhanced photocatalytic activity for hydrogen production from water. The structural morphology of Au-TiO2@GO revealed a thin layer (~2.5 nm) of GO shell over Au-TiO2 core, possessing higher specific surface area (~100 m2 g-1). Raman spectroscopy revealed bands at 1593 cm-1 and 1317 cm-1 cor esponding to G and D lines. GO facilitates decreases in the rate of e-/h+ recombination due to its reduction potential and Au loading increase sensitization of TiO2 in the visible light resulting in the increased activity for H2 production (~114 mmol) from the water.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972)
  2. Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
  3. Woodhouse M, Parkinson B, Chem. Soc. Rev., 38, 197 (2009)
  4. Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
  5. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446 (2010)
  6. Nakata K, Fujishima A, J. Photochem. Photobiol. C-Rev., 13, 169 (2012)
  7. Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581 (2013)
  8. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  9. Ni M, Leung MK, Leung DY, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
  10. Tang JW, Durrant JR, Klug DR, J. Am. Chem. Soc., 130(42), 13885 (2008)
  11. He H, Chen A, Chang M, Ma L, Li C, J. Ind. Eng. Chem., 19(4), 1112 (2013)
  12. Maeda K, Domen K, J. Phys. Chem. Lett., 1, 2655 (2010)
  13. Sarina S, Waclawik ER, Zhu H, Green Chem., 15, 1814 (2013)
  14. Kochuveedu ST, Jang YH, Kim DH, Chem. Soc. Rev., 42, 8467 (2013)
  15. Yang X, Wu LP, Du L, Li XJ, Catal. Lett., 145(9), 1771 (2015)
  16. Jabbari V, Hamadanian M, Karimzadeh S, Villagran D, J. Ind. Eng. Chem. (2015)
  17. Zhou X, Liu G, Yu J, Fan W, J. Mater. Chem., 22, 21337 (2012)
  18. Thimsen E, Formal FL, Gratzel M, Warren SC, Nano Lett., 11, 35 (2010)
  19. Park JH, Park OO, Kim S, Appl. Phys. Lett., 89, 163106 (2006)
  20. Jia F, Yao Z, Jiang Z, Li C, Catal. Commun., 12, 497 (2011)
  21. Maruthamani D, Divakar D, Kumaravel M, J. Ind. Eng. Chem., 30, 33 (2015)
  22. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  23. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  24. Williams G, Seger B, Kamat PV, ACS Nano, 2, 1487 (2008)
  25. Fan W, Lai Q, Zhang Q, Wang Y, J. Phys. Chem. C, 115, 10694 (2011)
  26. Zhang XY, Li HP, Cui XL, Lin Y, J. Mater. Chem., 20, 2801 (2010)
  27. Jia J, Li D, Wan J, Yu X, J. Ind. Eng. Chem., 33, 162 (2016)
  28. Mohamed RM, Mkhalid IA, J. Ind. Eng. Chem., 22, 390 (2015)
  29. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS, Chem. Soc. Rev., 44, 7540 (2015)
  30. Wang Y, Yu J, Xiao W, Li Q, J. Mater. Chem. A, 2, 3847 (2014)
  31. Liu H, Liu T, Dong X, Lv Y, Zhu Z, Mater. Lett., 126, 36 (2014)
  32. Sun Y, Xia Y, Analyst, 128, 686 (2003)
  33. Zhu SY, Liang SJ, Gu Q, Xie LY, Wang JX, Ding ZX, Liu P, Appl. Catal. B: Environ., 119, 146 (2012)
  34. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
  35. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
  36. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ, ACS Catal., 2, 949 (2012)
  37. Chen JJ, Wu JC, Wu PC, Tsai DP, J. Phys. Chem. C, 115, 210 (2010)
  38. Hoggard A, Wang LY, Ma L, Fang Y, You G, Olson J, Liu Z, Chang WS, Ajayan OM, Link S, ACS Nano, 7, 11209 (2013)
  39. Li R, Weng Y, Zhou X, Wang X, Mi Y, Chong R, Han H, Li C, Energy Environ. Sci., 8, 2377 (2015)