Journal of Industrial and Engineering Chemistry, Vol.37, 288-294, May, 2016
Core-shell morphology of Au-TiO2@graphene oxide nanocomposite exhibiting enhanced hydrogen production from water
E-mail:
The core.shell morphology of graphene oxide (GO) coated Au-TiO2 (Au-TiO2@GO) nanocatalysts has displayed enhanced photocatalytic activity for hydrogen production from water. The structural morphology of Au-TiO2@GO revealed a thin layer (~2.5 nm) of GO shell over Au-TiO2 core, possessing higher specific surface area (~100 m2 g-1). Raman spectroscopy revealed bands at 1593 cm-1 and 1317 cm-1 cor esponding to G and D lines. GO facilitates decreases in the rate of e-/h+ recombination due to its reduction potential and Au loading increase sensitization of TiO2 in the visible light resulting in the increased activity for H2 production (~114 mmol) from the water.
Keywords:Microwave hydrothermal synthesis;Core-shell nanostructure;Au-TiO2@graphene oxide photocatalyst;Plasmonic effect of Au-TiO2;Hydrogen production
- Fujishima A, Honda K, Nature, 238, 37 (1972)
- Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
- Woodhouse M, Parkinson B, Chem. Soc. Rev., 38, 197 (2009)
- Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
- Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446 (2010)
- Nakata K, Fujishima A, J. Photochem. Photobiol. C-Rev., 13, 169 (2012)
- Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581 (2013)
- Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
- Ni M, Leung MK, Leung DY, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
- Tang JW, Durrant JR, Klug DR, J. Am. Chem. Soc., 130(42), 13885 (2008)
- He H, Chen A, Chang M, Ma L, Li C, J. Ind. Eng. Chem., 19(4), 1112 (2013)
- Maeda K, Domen K, J. Phys. Chem. Lett., 1, 2655 (2010)
- Sarina S, Waclawik ER, Zhu H, Green Chem., 15, 1814 (2013)
- Kochuveedu ST, Jang YH, Kim DH, Chem. Soc. Rev., 42, 8467 (2013)
- Yang X, Wu LP, Du L, Li XJ, Catal. Lett., 145(9), 1771 (2015)
- Jabbari V, Hamadanian M, Karimzadeh S, Villagran D, J. Ind. Eng. Chem. (2015)
- Zhou X, Liu G, Yu J, Fan W, J. Mater. Chem., 22, 21337 (2012)
- Thimsen E, Formal FL, Gratzel M, Warren SC, Nano Lett., 11, 35 (2010)
- Park JH, Park OO, Kim S, Appl. Phys. Lett., 89, 163106 (2006)
- Jia F, Yao Z, Jiang Z, Li C, Catal. Commun., 12, 497 (2011)
- Maruthamani D, Divakar D, Kumaravel M, J. Ind. Eng. Chem., 30, 33 (2015)
- Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
- Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
- Williams G, Seger B, Kamat PV, ACS Nano, 2, 1487 (2008)
- Fan W, Lai Q, Zhang Q, Wang Y, J. Phys. Chem. C, 115, 10694 (2011)
- Zhang XY, Li HP, Cui XL, Lin Y, J. Mater. Chem., 20, 2801 (2010)
- Jia J, Li D, Wan J, Yu X, J. Ind. Eng. Chem., 33, 162 (2016)
- Mohamed RM, Mkhalid IA, J. Ind. Eng. Chem., 22, 390 (2015)
- Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS, Chem. Soc. Rev., 44, 7540 (2015)
- Wang Y, Yu J, Xiao W, Li Q, J. Mater. Chem. A, 2, 3847 (2014)
- Liu H, Liu T, Dong X, Lv Y, Zhu Z, Mater. Lett., 126, 36 (2014)
- Sun Y, Xia Y, Analyst, 128, 686 (2003)
- Zhu SY, Liang SJ, Gu Q, Xie LY, Wang JX, Ding ZX, Liu P, Appl. Catal. B: Environ., 119, 146 (2012)
- Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
- Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R, Nano Lett., 8, 36 (2008)
- Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ, ACS Catal., 2, 949 (2012)
- Chen JJ, Wu JC, Wu PC, Tsai DP, J. Phys. Chem. C, 115, 210 (2010)
- Hoggard A, Wang LY, Ma L, Fang Y, You G, Olson J, Liu Z, Chang WS, Ajayan OM, Link S, ACS Nano, 7, 11209 (2013)
- Li R, Weng Y, Zhou X, Wang X, Mi Y, Chong R, Han H, Li C, Energy Environ. Sci., 8, 2377 (2015)